310 likes | 404 Views
ECO3550 Thème 3. Le modèle des dotations de facteurs. Les théories modernes des avantages comparatifs. Les théories modernes cherchent à expliquer ( endogénéïser ) les écarts de productivité à la base des av. comp .
E N D
ECO3550 Thème 3 Le modèle des dotations de facteurs
Les théories modernes des avantages comparatifs • Les théories modernes cherchent à expliquer (endogénéïser) les écarts de productivité à la base des av. comp. • La plus importante les fait reposer sur des écarts dans les dotations de fctr • Elle a été développée par Hecksher, Ohlin et Samuelson dans les années 30 et 40 (HOS)
Contexte • Soit 2 économies… • produisant 2 biens x et y • à l’aide 2 facteurs de production substituables: • L • et T ou K. • On dit de ce modèle qu’il est «2*2*2»
Autres hypothèses spécifiques • Les 2 pays ont les mêmes technologies de prod. (F1j(K,L) = F2j(K,L) = Fj(K,L)) • La prod. d’un des 2 biens est plus intensive en utilisation de L • Les rendements d’échelle sont constants (Fj(K, L) = Fj(K,L))
Autres hypothèses périphériques • Ccp sur les marchés des fctrs et des biens • Mobilité parfaite des fctrs sur les marchés intérieurs et inexistante entre les pays • Absence d’entraves au commerce • Commerce équilibré
Endogénéïser les av. comparatifs • Dans le modèle ricardien, les av. comp. reposent sur des écarts de productivité de L donnés par les coef. aij caractérisant les techno. de prod. (les fctsFij(L)). • Dans le modèle HOS, ils reposent sur des diff. de dotations rel. de fctrs (Li/Ki) et sur l’intensité rel. de leur utilisation dans les 2 prod. (Lij/Kij)
Les dotations • On a donc 2 pays se distinguant seul. par leur dotation rel. en L (Li/Ki). • Nous aurons ici : L1/K1 < L2/K2; • le pays 1 est donc un pays dév. rel. bien pourvu en K… • alors que le pays 2 est un PVD rel. bien pourvu en L.
L’intensité factorielle des prod. • Les prod. des biens x et y se distinguent par leur utilisation rel. des 2 fctrs (Kij/Lij) • Nous aurons : Kix/Lix > Kiy/Liy; • la prod. du bien x est rel. + intensive en utilisation de K… • alors que la prod. du bien y est rel. + intensive en utilisation de L.
CPP et CR croissants • Soit Lij et Kijles unités de chaque ress. allouées à la production du bien j dans le pays i • On a maintenant 2 contraintes de ress. dans chaque pays : • Lix+ Liy ≤ Li • Kix+ Kiy ≤ Ki • et des CRij croissants (c.-à-d. des CPPs concaves)
Fcts de prod. et CR croissants • On a : Fj(K, L), la prod. du bien j (j=x,y) dans les pays 1 et 2 avec Fj’(L)>0 et Fj’’(L)<0 et Fj’(K)>0 et Fj’’(K)<0. • La productivité unitaire des 2 fctrs dans la prod. du bien j dans les 2 pays est une fct décroissante de leur utilisation lorsque l’autre est en Q fixe. (rendements marginaux ou factoriels décroissants)
Fcts de prod. à rendements factoriels décroissants Qij Fj(K,L) F’j(L) > 0 F’’j(L) < 0 (de même pour K avec L fixe) Lij
Rendements factoriels décroissants et CR croissants (K fixe et L variable) Production de X dans le pays i Production de Y dans le pays i Qix Qiy A Fx(K,Li) Fy(K, L1) B D C C B D A Li Lix Li Liy N.B.: De même pour K avec L fixe
CPP et prod. optimale avec CR croissants À mesure que Qx, la Q du bien intensif en K, augmente le long de la CPP, il faut utiliser de plus en plus d’unités de L par unité de K, ce qui fait augmenter CRx en Q du bien y, qui est lui intensif en L CPP du pays i Qy Fy(Ki, Li) Px/Py Qx Fx(Ki, Li) N.B.: on a maintenant des solutions intérieures, c.-à-d. que l’échange ne mènera plus à des spécialisations complètes, à moins que Px/Pytende vers 0 ou l’infini
CPPs avec dotations inégales CPP du pays 1 CPP du pays 2 Qy N.B.: Px/Pyle pays 1 produit rel. plus de x que de y que le pays 2 Qy Fy(K2, L2) Px/Py Px/Py Fy(K1, L1) Qx Fx(K1, L1) Fx(K2, L2) Qx N.B. : la dotation rel. en fctrs est l’unique diff. entre les 2 pays. Ici, on a L1/K1 < L2/K2 (n’oubliez pas que la prod de x est rel. plus intensive en K).
Fctrs de prod. substituables et prix rel. des fctrs de prod. (w/r) • Avec un seul fctr, les producteurs réagissent au Px/Py et déterminent l’allocation de L dans la prod. des diff. biens (ils décident seul. quoi produire) • Avec 2 fctrs K et L substituables, les producteurs peuvent aussi réagir aux w/r afin de déterminer comment produire • Les producteurs doivent donc répondre à 2 questions : quoi produire et comment le produire
Rémunération des fctrs • En ccp sur le marché des fctrs, on a: • wix = Pix * F’ix(L) • wiy= Piy * F’iy(L) • rix = Pix * F’ix(K) • riy= Piy * F’iy(K) • Chaque fctr est rémunéré à la valeur de son produit marginal N.B. : la mobilité des fctrs impliquerait ici wix=wiyet rix=riy
Dotations, w/r et Px/Py • w/r est : • une fct décroissante de la dotation rel. en L (plus un pays est bien doté en L, moins ce fct est prod. p.r. à l’autre et moins sa rémunération relative est importante) • Une fct croissante du prix rel. du bien intensif en L
Production, échange et Px/Py • En autarcie, on a P1x/P1y<P2x/P2y pcq w1/r1>w2/r2, c.-à-d. que le bien intensif en K coûte rel. moins cher dans le pays où le K est rel. moins cher. • Après ouverture, un Py/Px unique compris entre les 2 prix d’autarcie émerge auquel le pays 1 vendra des Qx au pays 2.
Allocation optimale en autarcie CPP du pays 1 CPP du pays 2 Qy Qy Fy(K2y1, L2y1) P1x/P1y Fy(K1y1, L1y1) P2x/P2y Qx Fx(K1x1, L1x1) Qx Fx(K2x1, L2x1) On remarque que chaque pays produit rel. plus du bien intensif en fctr dont il est rel. bien doté. Par ailleurs, puisque le marché des biens est en CCP, Pix/Piy doit être égal au CRix au point de production optimal. Ici, il faut que P1x/P1y<P2x/P2y.
Production optimale avec échange CPP du pays 1 CPP du pays 2 Qy Qy (P2x/P2y)autarcie Px/Py É A Px/Py (P1x/P1y)autarcie A É Qx Qx Le pays 1 se spécialise dans la prod. du bien x et les pays 2 dans la prod. du bien y. Chaque pays se spécialise dans la prod. rel. plus intensive en fctr dont le pays est rel. mieux doté.
Production, échange et Px/Py N.B. : la valeur des M d’un pays est limitée par celle de ses X, et on a donc : X2(Qy) * Py/Px = M2 (Qx) et X1(Qx) * Px/Py = M1 (Qy) CPP des pays 1 et 2 Qy X2y Px/Py M1y Qx M2x X1x
Échange, prix et salaires relatifs • Dans le pays 1, mieux doté en K, Px/Py, le prix du bien intensif en K augmente et w/r diminue. • Dans le pays 2, mieux doté en L, Px/Py diminue et w/r augmente • Le commerce profite aux propriétaires de la ressource dont le pays est rel. mieux doté
Théorème de Samuelson (1) • Dans chaque pays, le commerce entraîne une augmentation du prix rel. du fctr plus abondant (qui était auparavant rel. – cher) • Il y a donc convergence des prix des fctrs de prod. dans les 2 pays et entre les 2 pays • En important le bien intensif en L, le pays 1 importe en quelque sorte le fctr L abondant du pays 2, et vice versa
Théorème de Samuelson (2) • La ccp sur le marché mondial des biens entraîne simultanément un équilibre de ccp sur le marché mondial des fctrs • Le commerce international est un substitut à la mobilité des fctrs de prod.
Forces du modèle HOS (1) • En montrant que les propriétaires du fctr dont le pays est moins bien doté sont pénalisés par l’ouverture, le modèle apporte du poids à l’argument du «dumping social» • Or, le modèle ricardien prédisait des gains pour les travailleurs des 2 pays. • Ce point est en partie responsable de la popularité du modèle
Pertes des travailleurs du pays 1 et gains de bien-être • Même si le modèle prédit un appauvrissement rel. des travailleurs dans le pays 1, il prédit tout de même une augmentation du bien-être collectif • Il est aisé de montrer que les possibilités de consommation des 2 pays sont affectées positivement par le commerce
Échange et gains de bien-être CPP du pays 1 CPP du pays 2 Qy Qy (P2x/P2y)autarcie P¸x/Py É A P¸x/Py (P1x/P1y)autarcie A É Qx Qx N.B.: l’on sait que l’échange fera augmenter Px/Py dans le pays 1 et le fera diminuer dans le pays 2, ce faisant il ouvre la possibilité de consommer plus des 2 biens
Échange et gains mutuels En superposant les 2 graphiques précédents, on isole la zone où les habitants des 2 pays consomment plus des 2 biens CPP des pays 1 et 2 Qy (Px/Py)échange Qx
Force du modèle HOS (2) • Le modèle ricardien illustre les bénéfices du commerce entre des pays séparés par des écarts technologiques. • Le modèle HOS illustre les bénéfices du commerce entre des pays technologiquement similaires • Cohérent avec la mobilité du capital et des connaissances (diff. entre PD et PVD est davantage la dotation en fctr que techno.)
Limite du modèle HOS (1) • Empiriquement, les prix des fctrs son très variables et tendent à se rapprocher seul. dans des pays ayant des dotations de fctrs similaires • Ce fait peut s’expliquer par la violation d’hyp.: • Même technologie de prod. • Loi du prix unique • Mobilité des fctrs
Paradoxe de Leontief • Les É-U sont rel. bien dotés en K, mais leurs M sont rel. plus intensives en utilisation de K que leurs X • Av. comp. dans la prod. de services requérant bcp de K humain