240 likes | 382 Views
Analyse de l’interaction entre le génotype et la quantité d’aliment chez les porcs en appliquant les modèles de norme de réaction. Introduction. 1995: Expérience de sélection dans l’élevage porcin → Interaction entre génotype & la quantité d’aliment ( Cameron et Curran).
E N D
Analyse de l’interaction entre le génotype et la quantité d’aliment chez les porcs en appliquant les modèles de norme de réaction
Introduction • 1995: Expérience de sélection dans l’élevage porcin → Interaction entre génotype & la quantité d’aliment (Cameron et Curran). • 2002: influence de la quantité d’aliment sur l’expression du potentiel génétique (Hermesch et al). • 2002-2004: utilisation des modèles de norme de réaction → analyse de l’interaction entre génotype et environnement (Kolmodin et al; Pollot and Greeff). • Modèles de norme de réaction: Performance de l’expression d’un génotype / environnement.
Objectifs • Établir un lien entre génotype (performance viande maigre) et quantité d’aliment en formant des lots de descendants auxquels on attribue différentes quantités d’aliment. => Amélioration de la sélection pour une croissance efficiente. Moyens: application de modèles de norme de réaction / modèles père standard
Matériels & méthodes • Description des données - Site: élevage d’engraissement industriel. - Verrats de 3 lignées terminales → descendants mâles. - alimentation avec nourrisseurs électroniques. - Période test: 7 semaines. - Etablissement de lots: répartition en trois lots avec des quantités différentes d’aliment.
Réalisation des lots • 2624 Verrats disponibles
Paramètres analysés • DFI = Ingestion quotidienne moyenne. • ADG = Gain quotidien moyen. • FCR = Indice de conversion. • BF = tissu graisseux niveau site P2 du dos. => modèle père multi-caractère. • Nivellement des variances: Standardisation des traits de caractère sur une moyenne de 0 et une déviation standard de 1 => N(0,1).
Site P2 P2 6.5 cm Echographie
Paramètres analysés • DFI = Ingestion quotidienne moyenne. • ADG = Gain quotidien moyen. • FCR = Indice de conversion. • BF = tissu graisseux niveau site P2 du dos. => modèle père multi-caractère. • Nivellement des variances: Standardisation des traits de caractère sur une moyenne de 0 et une déviation standard de 1 => N(0,1).
Analyse statistique • Logiciel: mixed procedure, SAS statistical software package, 1999. • Modèle 1: effet aléatoire du père et chaque trait de caractère est défini séparément pour chaque niveau d’ingestion. • Modèle 2: effet aléatoire du père couplé avec la quantité d’aliment. • Modèle 3: modèle de norme de réaction.
Equations • Modèle 1: yij= Fixed + Si + eij • Modèle 2: yijk= Fixed + FLk + Si + SixFLk + eijk • Modèle 3: yij= Fixed + Sa,i + Sb,i(Xij) + eij • Effets fixés: - la lignée. - lots d’aliment hebdomadaires. - la loge.
yij Norme de réaction Sb,i Sa,i Xij Graphique norme de réaction Modèle 3: yij= Fixed + Sa,i + Sb,i(Xij) + eij Sa,i et Sb,i supposés avoir une distribution normale.
Déviation standard maximum entre les différents niveaux d’ingestion: 1,38. • L’éventail limité à 3 lots de quantité d’aliment => capacités de détection GxFL dans cette étude. • Interaction entre le génotype et la quantité de nourriture pour les caractères DFI, ADG et FCR avec une variation phénotypique inférieure à 2 %. • Pas d’interaction pour le caractère BF.
R SA A 60 Kg 10% 70 Kg 10% 80 Kg 10% 62 Kg 13% 72.3 Kg 13% 82.6 Kg 13%
Remarques: Corrélation globalement proche de 0 => données bien équilibrées / autres études de 2002 & 2004 (corrélation très hautement positive ou négative et données déséquilibrées).
Héritabilités: modèle 3: utilise toutes les données ensemble. modèle 1: dérivées de chaque niveau d’ingestion pris séparément.
Comparaison d’héritabilité des 3 modèles • Héritabilité du modèle 1 proche du modèle 3. • possibilité de simplifier calculs pour ce type d’expérience en prenant le modèle 1 (meilleure rentabilité).
Critiques • Race? • Age? • Stress? • Logement individuel vs collectif ? Interactions? • Loges des trois lots identiques? Surfaces? • Température? Luminosité? Ventilation? • Quantités précises d’aliment proposées? • Aspect qualitatif de l’aliment? • Planning de distribution? • Précisions sur la récolte des résultats?
CONCLUSION • Utilité des modèles de norme de réaction pour les analyses d’interaction génotype / quantité alimentaire. • Interaction génotype / quantité d’aliment pour les caractères DFI, ADG et FCR avec une variance phénotypique significative pour DFI. • Pas d’interaction génotype / quantitéd’aliment n’a été établie quant au BF (tissu graisseux au niveau dorsal). • Etude perfectible: explorer des modèles de norme de réaction de façon plus poussée en appliquant des paramètres d’environnement alternatifs pour obtenir un meilleur modèle pour l’interaction.
CONCLUSION • Applications pratiques de cette étude: Importance du génotype des mâles choisis pour économiser l’aliment et obtenir une viande maigre plus rentable aspect sélection > aspect quantité d’aliment.
Bibliographie • S.Hermesch, A.E. Huisman, B.G. Luxford & H.-U Graser Analysis of genotype by feeeding level interaction in pigs applying reaction norm models.S(2006) 8ème Congrès de Genetique Appliquée aux Production de Bétail, 13-18 août , Belo Horizonte, Brésil.
2ème doctorat médecine vétérinaire, groupe 11 Cueff Stéphane Ninet Philippe Trotel Anne