E N D
CO TO JEST PARKIETAŻ Parkietaż jest powtarzającym się obrazem złożonym z wielokątów foremnych wypełniającym całą dostępną przestrzeń. Wielokąty układają się koło siebie, mając wszystkie boki wspólne z sąsiednimi figurami. Definiuje się go następująco: Parkietaż jest zbiorem przystających wielokątów foremnych złożonych w ten sposób, że każdy punkt płaszczyzny należy do jakiejś figury i w danym punkcie płaszczyzny spotykają się wierzchołki określonej liczby figur.
RODZAJE PARKIETAŻY Okresowe parkietaże foremne regularne (platońskie). Składają się z przystających wielokątów foremnych. Istnieją tylko trzy takie parkietaże: 6^3,4^4,3^6 [ 6, 6, 6 ] [ 4, 4, 4, 4 ] [ 3, 3, 3, 3, 3, 3 ]
RODZAJE PARKIETAŻY sześciokąt i trójkąt [ 6, 3, 3, 6 ] kwadrat i trójkąt [ 4, 3, 3, 3, 4 ] sześciokąt i kwadrat [ 6, 4, 3, 4 ] Okresowe parkietaże półforemne regularne (archimedesowskie, półforemne) Istnieje tylko osiem takich parkietaży: (3^4,6),(3^3,4^2),(4,8^2),(4,6,12),(3,4,6,4), (3^2,4,3,4),(3,12^2),(3,6,3,6). Z tych samych wielokątów można budować różne parkietaże.
RODZAJE PARKIETAŻY Okresowe parkietaże półforemne nieregularne Przykładem jest parkietaż Johnsona, który ma dwa rodzaje wierzchołków: 3^6 oraz (3^2,4,12). Parkietaże niokresowe Przykładem jest parkietażPearsona,w którym płaszczyzna pokrywana tak, aby wzór nie powtarzał się okresowo po przesunięciu. Parkietaż Johnsona Parkietaż Pearsona Parkietaż Pearsona
Parkietaż, kafelkowanie lub tesselacja– pokrycie płaszczyzny wielokątami przylegającymi i nie zachodzącymi na siebie. Można rozpatrywać parkietaże części płaszczyzny oraz powierzchni, które nie są płaskie (np. parkietaże sfery). Można także badać parkietaże przestrzeni trójwymiarowej i przestrzeni wymiarów wyższych. Nie jest konieczne ograniczanie się do przestrzeni euklidesowych. W praktyce elementy parkietażu nie muszą być wielokątami (parkietaż chodnika na zdjęciach).
PARKIETAŻ W ARCHITEKTURZE Pałac Alhambra - zastosowanie geometrii w zdobnictwie. Ten mauretański, warowny zespół pałacowy zbudowany w XIII wieku w Grenadzie zachwyca wspaniałą architekturą, przepięknymi zdobieniami ścian pokrytych powtarzającymi się, geometrycznymi i kwiatowymi wzorami, wypełniającymi całą powierzchnię.
PARKIETAŻ W TWÓRCZOŚCI PLASTYCZNEJ Prace Escher Maurits’a - sztuka inspirowana matematyką. Escher zapełniał płaszczyznę rybami, ptakami, gadami, pajacami i innymi postaciami o przedziwnych kształtach, a do projektowania tych figur wykorzystywał przekształcenia geometryczne - symetrie, translacje i obroty. Uzyskiwał w ten sposób zaskakujące wzory tzw. parkietaże escherowskie
PARKIETAŻ „POD STOPAMI” Kostki brukowe mają zazwyczaj kształt figur, którymi można szczelnie wypełnić płaszczyznę (powstaje wtedy parkietaż). Niektóre parkietaże powstają z kostek jednego kształtu, inne z dwóch, trzech lub więcej. Gdzie szukać ciekawych posadzek? Najprościej na ulicy. Wystarczy zwrócić uwagę na to, po czym chodzimy na co dzień, by zobaczyć interesujące z matematycznego punktu widzenia posadzki, chodniki, czy wycieraczki.
MATERIAŁY ŹRÓDŁOWE • http://www.matematyka.wroc.pl/matematykawsztuce/matematyka-pod-stopami • http://www.czasopisma.gwo.pl/index.php?menu=107&main=8807 • http://pl.wikipedia.org/wiki/Parkieta%C5%BC • http://www.decorimpresja.pl/monte/podstaw/przedmiot_p/matma/parkiet/parkiet03.htm
WYKONAŁY: Roksana Nowak Angela Smolak Dominika Majder Klasa 2c