1 / 12

Contoh Penerapan ANALISIS REGRESI BERGANDA

Contoh Penerapan ANALISIS REGRESI BERGANDA. Model Y = bo + b1 X1 + b2 X2 Y= b0 + b1 X1 + b2X2 + b12X1X2 +b11 X1 2 + b22 X2 2 Y = variabel tak bebas X1 dan X2 = variabel bebas. Model Y= bo + b1 X1 + b2 X2. Matrik rancangan X. Matrik rancangan.

zubeda
Download Presentation

Contoh Penerapan ANALISIS REGRESI BERGANDA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Contoh PenerapanANALISIS REGRESI BERGANDA • Model Y = bo + b1 X1 + b2 X2 • Y= b0 + b1 X1 + b2X2 + b12X1X2 +b11 X12 + b22 X22 Y = variabel tak bebas X1 dan X2 = variabel bebas

  2. Model Y= bo + b1 X1 + b2 X2 • Matrik rancangan X

  3. Matrik rancangan

  4. Penduga parameter regresi • b = (X’X)-1 X’Y • (X’X)-1 = invers matrik X’X

  5. Anova Regresi

  6. Jumlah kuadrat • FK = ( 1’ Y)2/n = ( yi)2/n • JK Regresi (JKR)= b’ X’Y • JK Total (JKT) = Y’Y – FK • JKS = JKT – JKR • Koefisien determinasi R2= JKR/JKT

  7. Dugalah persamaan regresi Y = b0+b1N+ b2P+b12NP+b11N2+b22P2 bagi data respon hasil terhadap pemupukan Nitrogen dan Fosfor berikut :

  8. Uji kehomogenan regresi linier • Pendugaan regresi linier y = a + b x , dapat diperoleh dengan metode kuadrat terkecil. n  x iyi - ( x i)(  yi) Penduga b = ------------------------------  x i2 - ( x i)2 a = y – b x , y = rata-rata y ; x = rata-rata x

  9. Uji kehomogenan/keidentikan • Statistik uji [Sxy – SxSy/N]2 { Syy –sy2/N] - --------------------- - s2 } Sxx – Sx2/N w = -------------------------------------------------- {(N-2H)/(2(H-1)} , S2 N=total seluruh pengamatan, H=banyaknya regresi yang diuji, S2 = jumlah kuadrat sisaan seluruh regresi yang diuji, dan Sx= ( xhj), Sxx = ( xhj2), Sy= ( yhj), Syy = ( yhj2), Sxy= ( xhj yhj)

  10. Uji kesejajaran

  11. Uji kesamaan intersep

  12. Uji kehomogen, kesejajaran dan kesamaan intersep regresi linier bagi data berikut:

More Related