1 / 49

Università degli Studi di Cagliari FACOLTA’ DI INGEGNERIA

Università degli Studi di Cagliari FACOLTA’ DI INGEGNERIA. Laboratorio di Modelli Matematici per il Supporto alle Decisioni - LAB_MMSD -. Dott.ssa Michela Lai mlai@unica.it Dott.ing. Alberto Pillai alberto.pillai@virgilio.it. http://sorsa.unica.it/. Esercitazione 2. Esercizi per casa 1.

Download Presentation

Università degli Studi di Cagliari FACOLTA’ DI INGEGNERIA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Università degli Studi di CagliariFACOLTA’ DI INGEGNERIA Laboratorio di Modelli Matematici per il Supporto alle Decisioni - LAB_MMSD - Dott.ssa Michela Lai mlai@unica.it Dott.ing. Alberto Pillai alberto.pillai@virgilio.it http://sorsa.unica.it/ Esercitazione 2

  2. Esercizi per casa 1 Scrivere il modello e risolverlo con dati a piacere L’agenzia matrimoniale Cuori Solitari deve organizzare il gran ballo di fine anno. L’agenzia ha n clienti maschi e n clienti femmine, ed ha prenotato n tavoli da due posti al famoso ristorante Cupido. Dai profili psicologici raccolti dai clienti, l’agenzia è in grado di calcolare, per ogni maschio i, l’insieme F(i) delle femmine con le quali potrebbe essere interessato ad intrecciare una relazione, e che potrebbero essere interessate ad intrecciare una relazione con lui; un analogo insieme M(j) può essere ottenuto per ogni femmina j. Dai profili dei clienti, l’agenzia è anche in grado di calcolare, per ogni coppia (i; j) “compatibile”, il costo cijdella cena da offrire, che deve consistere di piatti graditi ad entrambi i commensali. L’agenzia vuole quindi decidere come formare le coppie per il gran ballo in modo da evitare coppie incompatibili e minimizzare il costo complessivo delle cene.

  3. Esercizi per casa 1

  4. Esercizi per casa 2Individuazione del problema, analisi della realtà e raccolta dati • Per un’indagine conoscitiva si vogliono contattare rispettivamente almeno: • 150 donne sposate • 110 donne non sposate • 120 uomini sposati • 100 uomini non sposati • Dati: Costo telefonate al mattino (prima delle 14:00) = 0.2€ Costo telefonate alla sera (dopo le 14:00) = 0.1€ Probabilità di risposta: Quante telefonate effettuare nei due periodi? Si richiede che almeno metà delle telefonate sia effettuata al mattino

  5. Problema del call centerIndividuazione del problema, analisi della realtà e raccolta dati ESERCIZIO: Scrivere il relativo modello di ottimizzazione

  6. Problema del call centerCostruzione del modello di ottimizzazione Variabili • tm: numero di telefonate da compiere al mattino di costo unitario • tp: numero di telefonate da compiere al pomeriggio di costo unitario Parametri • i: indice delle categorie di persone a cui telefonare • aim: probabilità di trovare una persona della categoria i al mattino • aip: probabilità di trovare una persona della categoria i al pomeriggio • bi: numero minimo di persone di categoria i a cui telefonare

  7. Problema del call centerCostruzione del modello di ottimizzazione Funzione obiettivo: min cm ∙ tm + cp ∙ tp Soddisfacimento del numero minimo di chiamate per la categoria i: aim ∙ tm + aip ∙ tp ≥ bi Almeno la metà delle telefonate devono essere effettuate al mattino: tm - tp ≥ 0 Vincoli di non-negatività: tm ≥0 tp ≥0 ESERCIZIO: Scrivere l’istanza su lindo

  8. Problema del call centerDeterminazione delle soluzioni Modello di ottimizzazione: min cm ∙ tm + cp ∙ tp aim ∙ tm + aip ∙ tp ≥ bi tm - tp ≥ 0 tm ≥0 tp ≥0

  9. Problema del call centerDeterminazione delle soluzioni ESERCIZIO: Determinare la soluzione con Lindo

  10. Problema del call centerAnalisi dei risultati Soluzione con Lindo LP OPTIMUM FOUND AT STEP 5 OBJECTIVE FUNCTION VALUE 1) 1440.000 VARIABLE VALUE REDUCED COST TM 480.000000 0.000000 TP 480.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 2) 13800.000000 0.000000 3) 3400.000000 0.000000 4) 0.000000 -0.120000 5) 11600.000000 0.000000 6) 0.000000 -0.800000 NO. ITERATIONS= 5

  11. Introduzione I problemi di flusso su rete presentano una speciale struttura che consente di adottare algoritmi particolarmente efficienti per la loro risoluzione Tra i vari problemi di flusso, ci occuperemo del Problema del Flusso di Minimi Costo (MCF). In questa esercitazione: faremo brevi richiami della teoria dei grafi e del MCF vedremo due possibili applicazioni del MCF utilizzeremo un solver specializzato per problemi di MCF

  12. Richiami di teoria dei grafi Un grafo G(N, A) è definito da una coppia di insiemi N e A N, detto insieme dei nodi, è l’insieme dei primi n numeri naturali A, detto insieme degli archi, è un sottoinsieme del prodotto cartesiano N x N Dato un nodo i Є N P(i) = {j: (j, i) Є A}, è l’insieme dei predecessori di i S(i) = {k: (i, k) Є A}, è l’insieme dei successori di i Dato un arco (i, j) Є A Il nodo iè la coda dell’arco Il nodo j è latesta dell’arco Si ha un grafo orientato quando (i, j)≠(j,i)

  13. G(N, A) orientato N = {1, 2, 3, 4, 5} A = {(1, 2), (1, 4), (2, 3), (2, 5), (3, 1), (3, 5), (4, 5), (5, 4)} Si dice cammino un insieme di archi in cui ogni coppia contiene un nodo della coppia precedente. Esempio: {(1, 2), (2, 5), (4, 5)} Si dice cammino orientato un insieme di archi in cui la testa di ogni arco coincide con la coda dell’arco seguente. Esempio: {(1, 2), (2, 5), (5, 4)} Richiami di teoria dei grafi

  14. Grafoconnesso esiste sempre un cammino tra qualsiasi coppia di nodi Grafo fortemente connesso esiste un cammino orientato tra ogni coppia di nodi Ciclo cammino chiuso, inizia e termina nello stesso nodo. Se il cammino è orientato, anche il ciclo è orientato. Ciclo Hamiltoniano ciclo che passa per ogni nodo del grafo una sola volta Richiami di teoria dei grafi

  15. Foglia nodo testa/coda di un solo arco Albero grafo connesso privo di cicli ha almeno due foglie Estraendo un qualsiasi arco l’albero viene suddiviso in due sottoalberi distinti un albero con n nodi presenta n-1 archi Dato un grafo G=(N, A) Grafo parziale G‘=(N, A‘)  grafo in cui Albero ricoprente di un grafo albero che costituisce un grafo parziale che tocca tutti i nodi del grafo Richiami di teoria dei grafi

  16. Matrice di incidenza nodi-archi uno dei possibili modi in cui rappresentare un grafo Ha un numero di righe pari al numero dei nodi Ha un numero di colonne pari al numero degli archi In ogni colonna solo due elementi sono non-nulli: 1 in corrispondenza della coda di quell’arco -1 in corrispondenza della testa di quell’arco La matrice di incidenza è una struttura adatta a ricavare algoritmi, ma non consente una buona implementazione Richiami di teoria dei grafi

  17. Esercizio Ricavare la matrice di incidenza nodi-archi del grafo Richiami di teoria dei grafi Una matrice di incidenza con n nodi ha rango n-1

  18. Dimostrazione Il suo rango non è n, infatti, comunque si estragga un minore di ordine n la somma delle sue colonne risulta sempre nulla Considerato un albero ricoprente del grafo, il minore ad esso corrispondente ha n righe e n-1 colonne. Questo albero presenta almeno 2 foglie e la sua matrice di incidenza presenta almeno 2 righe con un coefficiente non nullo Con delle permutazioni si porta il coefficiente non nullo di una foglia in prima riga sulla diagonale principale Si cancella quella foglia e quel ramo, si ottiene un nuovo albero con almeno 2 foglie che possono essere portate in seconda riga sulla diagonale principale Iterando questo procedimento, si portano n-1 coefficienti non nulli sulla diagonale principale Richiami di teoria dei grafi

  19. Il problema del flusso di minimo costo Dato un grafo G(N,A), ad ogni nodo i viene associata una quantità di risorsa bi Se bi > 0 il nodo i è un nodo offerta Se bi < 0 il nodo i è un nodo domanda Se bi = 0 il nodo i è un nodo di transito Si assume che l’offerta totale di risorsa sia uguale alla domanda, in questo caso la rete si dice bilanciata Notazione: xij: flusso di risorsa che transita sull’arco (i,j) cij : costo di transito sull’arco (i,j), il costo è unitario

  20. Formalizzazione del MCF Il problema del flusso di minimo costo dove E è la matrice di incidenza nodi archi Se una rete non è bilanciata, occorre bilanciarla con opportuni valori di domande/offerte in nodi artificiali connessi da archi di costo molto elevato

  21. Esercizio Risolvere l’istanza con il solver Lindo

  22. Esercizio

  23. Esercizio Soluzione con Lindo:

  24. Utilizzo del solver specializzato MCF c Problem line (il carattere c introduce righe utilizzate per commenti) p min 5 8 (il carattere p introduce la riga della f.o. questo problema ha 5 nodi e 8 archi) c c Node descriptor lines (per convenzione l’offerta è positiva e la domanda è negativa) n 1 2 (il carattere n introduce la riga relativa a un nodo; ad esempio il nodo 1 offre 2 unità di risorsa) n 2 5 n 3 1 n 4 -4 n 5 -4 (il nodo 5 domanda 4 unità di risorsa) c c Arc descriptor lines a 1 2 0 10 5 (il carattere a introduce la riga relativa a un arco, riportando nell’ordine coda, a 1 3 0 10 -2 testa, limite inferiore del flusso, limite superiore del flusso e costo) a 1 5 0 10 2 a 2 3 0 10 -4 a 3 4 0 10 0 a 4 2 0 10 6 a 4 5 0 10 3 a 5 3 0 10 4 c c End of file Comandi essenziali per MCF: • read nome_file.dimacs • optimize • display • write sol_nome_file.txt

  25. Utilizzo del solver specializzato MCF Soluzione con MCF: c Output to minimum-cost flow problem sample3.dimacs c The problem was solved with a network simplex code c c need 4 iteration(s) in 0 second(s). s -12 (questo è il valore ottimo della f.o.) f 1 3 2 (il flusso da 1 a 3 vale 2 all’ottimo) f 2 3 5 f 3 4 8 f 4 5 4 c c All other variables are zero

  26. Il problema dell’Albero Ricoprente di Minimo Costo (MST – Minimal Spanning Tree) Il problema del Commesso viaggiatore (TSP - Travelling Salesman Problem)

  27. Grafo non orientatoo simmetrico grafo in cui tutti gli archi sono non orientati Grafo orientato grafo in cui tutti gli archi sono orientati Dato un grafo non orientato G=(N,A) taglio (N',N'')del grafo partizione dell’insieme N in due sottoinsiemi non vuoti N' e N''. Archi di taglio  insieme degli archi aventi un estremo in N' e l’altro in N'' A(N', N'') = {(i, j) Є A: i Є N', j Є N'' o j Є N', i Є N'' } Dato un grafo orientato G=(N,A) l’insieme A è partizionato in due sottoinsiemi distinti Archi diretti del taglio, A+(N', N'') A+(N', N'') = {(i, j) Є A: i Є N', j Є N'' } Archi inversi del taglio, A-(N', N'') A-(N', N'') = {(i, j) Є A: j Є N', i Є N'' } A(N', N'') = A+(N', N'') U A-(N', N'') Richiami di teoria dei grafi

  28. Richiami di teoria dei grafi Esercizio: Dato il taglio (1,3,5)(2,4,6) del grafo in figura, determinare l’insieme degli archi di taglio

  29. Dato un grafo non orientato G(N, A) i, j ЄN sono connessi se esiste un cammino tra loro i, j ЄN sono connessi se non esiste nessun taglio (N',N'') tale che i Є N', j Є N'' e A(N',N'')= ø  per ogni taglio taglio (N’,N’’) tale che i Є N', j Є N'' deve esistere almeno un arco di taglio Dato un grafo orientato G(N, A) i, j ЄN sono connessi se esiste un cammino orientato tra loro i, j ЄN sono connessi se non esiste nessun taglio (N',N'') tale che i Є N', j Є N'' e A+(N',N'')= ø Richiami di teoria dei grafi

  30. Albero di copertura di minimo costo Una banca ha molte filiali e un Centro Elettronico Unificato (CEU) in cui sono svolte tutte le transazioni La banca ha bisogno di collegare tutte le filiali col CEU affittando linee dedicate E’ possibile affittare una linea dedicata dal CEU ad ogni filiale, ma, se la capacità delle linee è sufficientemente grande, può essere più conveniente collegare gruppi di filiali tra loro “vicine” e almeno una al CEU Si deve determinare quali linee affittare in modo tale da collegare tutte le filiali al CEU e minimizzare il costo di affitto delle linee

  31. Albero di copertura di minimo costo Modellazione del problema Dato un grafo non orientato G(N,A) con |N|=n e |A|=m Ogni filiale è rappresentata con un nodo; un ulteriore nodo rappresenta il CEU Ogni arco a Є A rappresenta i potenziali collegamenti tra coppie di filiali o tra filiali e CEU con relativo costo ca reale positivo Questo problema consiste nel determinare un grafo parziale G’=(N,A’) connesso di costo minimo, in cui il costo complessivo è dato dalla somma dei costi d’arco in A’. Il grafo parziale in questo caso è un albero ricoprente di G

  32. Albero di copertura di minimo costo Introduciamo per ogni arco a una variabile logica xa • xa= 1 se l’arco a viene selezionato per formare l’albero di copertura • xa= 0 se l’arco a non viene selezionato per formare l’albero di copertura • Affinché l’insieme degli archi selezionati formi un grafo parziale connesso è necessario e sufficiente che per ogni taglio (N’,N’’) vi sia almeno un arco a Є A(N’,N’’) con xa = 1, quindi il vincolo • Є(N’,N’’) • garantisce che i valori assunti dalle variabili decisionali definiscano un grafo parziale connesso

  33. Albero di copertura di minimo costo Il problema può essere quindi così formulato: Questa formulazione presenta un numero esponenziale di vincoli, uno per ogni possibile sottoinsieme proprio dell’insieme dei nodi. Il problema viene risolto con un algoritmo euristico.

  34. Il problema del commesso viaggiatore Un commesso viaggiatore deve consegnare le sue mercanzie in n località, compresa quella in cui si trova Nota la distanza tra località, il commesso viaggiatore vuole organizzare il suo viaggio in modo che la distanza percorsa sia minima e tutte le località siano raggiunte Dato un grafo non orientato e completo (contenente cioè tutti i possibili archi) G(N,A) con |N|=n e |A|=m=n(n-1)/2 • Ad ogni località è associato un nodo • Ad ogni arco è associato un costo cij reale e positivo, che rappresenta la minima distanza tra i e j

  35. Il problema del commesso viaggiatore L’attività del commesso viaggiatore corrisponde ad un ciclo Hamiltoniano sul grafo G Il problema del commesso viaggiatore consiste nell’individuare il più corto tra tutti i cicli Hamiltoniani Applicazioni: trasporti e logistica, ma non solo… Servire n richieste di lettura e scrittura su un disco magnetico, in modo da minimizzare il ritardo dovuto ai movimenti della testina Trovare la sequenza ottimale dei fori da realizzare nella produzione di circuiti stampati, minimizzando i tempi di movimento del braccio meccanico

  36. Il problema del commesso viaggiatore Introduciamo per ogni arco a una variabile logica xij • xij =1 se l’arco (i,j) appartiene al ciclo scelto • xij = 0 altrimenti • La funzione obiettivo può essere quindi scritta come • Poiché si vuole ottenere un ciclo, in ogni nodo devono incidere esattamente due archi, ovvero:

  37. Il problema del commesso viaggiatore I vincoli precedenti garantiscono solo che gli archi selezionati costituiscano una copertura per cicli del grafo, ovvero una copertura di tutti i nodi del grafo mediante cicli che possono essere disgiunti Esempio: Si sono indicati in grassetto gli archi selezionati

  38. Il problema del commesso viaggiatore Per imporre che gli archi selezionati formino un ciclo Hamiltoniano, occorre che la copertura per cicli formi un grafo parziale connesso Condizione necessaria e sufficiente affinché l’insieme degli archi selezionati formi un grafo parziale connesso è che per ogni taglio (N’,N’’) vi sia almeno un arco di taglio:

  39. Il problema del commesso viaggiatore La formulazione completa di un problema simmetrico di TSP è:

  40. Il problema del commesso viaggiatore Dato un grafo orientato G=(N,A) La formulazione completa di un problema asimmetrico di TSP è:

  41. Il problema del commesso viaggiatore Per risolvere istanze di TSP si ignora il vincolo di connessione sui tagli e si determinano delle soluzione non connesse, che rappresentano dei limiti inferiori del problema originale Successivamente si impone la connessione aggiungendo un numero ristretto di vincoli alla soluzione ottenuta ESERCIZIO: Scrivere l’istanza su lindo

  42. Il problema del commesso viaggiatore ESERCIZIO: Scrivere l’istanza su lindo utilizzando il TSP asimmetrico

  43. Il problema del commesso viaggiatore

  44. Il problema del commesso viaggiatore Soluzione inammissibile, in quanto non costituisce un grafo connesso 2 1 OBJ=5668 3 6 5 4

  45. Il problema del commesso viaggiatore E’ necessario inserire nuovi vincoli che impongano la connessione della soluzione: X_1_3 + x_3_1 ≤ 1 X_4_5 + x_5_4 ≤ 1 X_2_6 + x_6_2 ≤ 1

  46. Il problema del commesso viaggiatore Soluzione ammissibile dell’istanza di TSP OBJ=6610 2 1 3 6 5 4

  47. Il problema del commesso viaggiatore Con riferimento al precedente problema, scrivere con Lindo l’istanza di TSP simmetrico

  48. Il problema del commesso viaggiatore

  49. Il problema del commesso viaggiatore Soluzione ammissibile dell’istanza di TSP 2 1 OBJ=6610 3 6 5 4

More Related