330 likes | 914 Views
Procesos automatizados. Un moderno avión comercial. Ejemplos de procesos automatizados. Satélites. Ejemplos de procesos automatizados. Control de la concentración de un producto en un reactor químico. Ejemplos de procesos automatizados. Control en automóvil.
E N D
Procesos automatizados • Un moderno avión comercial
Ejemplos de procesos automatizados • Satélites
Ejemplos de procesos automatizados • Control de la concentración de un producto en un reactor químico
Ejemplos de procesos automatizados • Control en automóvil
El proceso de diseño del sistema de control • Para poder diseñar un sistema de control automático, se requiere • Conocer la ecuación diferencial que describe el comportamiento del proceso a controlar. • A esta ecuación diferencial se le llama modelo del proceso. • Una vez que se tiene el modelo, se puede diseñar el controlador.
f(t) z(t) m b k Conociendo el proceso … • MODELACIÓN MATEMÁTICA Suspensión de un automóvil Fuerza de entrada Desplazamiento, salida del sistema
Conociendo el proceso… • MODELACIÓN MATEMÁTICA Nivel en un tanque Flujo que entra – Flujo que sale = Acumulamiento qi(t) Flujo de entrada h(t) A (área del tanque) qo(t) Flujo de salida R (resistencia de la válvula)
Conociendo el proceso… • MODELACIÓN MATEMÁTICA Circuito eléctrico
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Suspensión de un automóvil Función de transferencia
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Nivel en un tanque Función de transferencia
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Circuito eléctrico Función de transferencia
La función de transferencia • Nos indica como cambia la salida de un proceso ante un cambio en la entrada • Diagrama de bloques Proceso Entrada del proceso (función forzante o estímulo) Salida del proceso (respuesta al estímulo)
La función de transferencia Diagrama de bloques • Suspensión de un automóvil Entrada (Bache) Salida (Desplazamiento del coche)
La función de transferencia Diagrama de bloques • Nivel en un tanque Qi(s) (Aumento del flujo de entrada repentinamente) H(s) (Altura del nivel en el tanque
La función de transferencia Diagrama de bloques • Circuito eléctrico Ei(s) (Voltaje de entrada) Eo(s) (Voltaje de salida)
Propiedades y teoremas más significantes • TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta) • TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales) • TEOREMA DE TRASLACIÓN DE UNA FUNCIÓN (Nos indica cuando el proceso tiene un retraso en el tiempo (tiempo muerto))
Ejemplo aplicado Se tiene un proceso como el mostrado en la figura. El flujo de entrada cambió repentinamente de 5 m3/min a 15 m3/min • Cuál es la altura final del tanque una vez que alcanzó la estabilización? • Cuál es la altura del tanque 4 minutos después de que se aplicó el escalón. • Cuánto tiempo tardará el sistema en estabilizarse? (al 98.2% de la respuesta final) 5 m3/min A = 2 m2 10 m 5 m3/min R = 2 min/m2
Ejemplo aplicado 5 m3/min A = 2 m2 10 m 5 m3/min R = 2 min/m2
La respuesta del proceso en el tiempo TRANSFORMADA INVERSA DE LAPLACE
Cambio en la altura (salida) El cambio en el flujo de entrada se aplicó aquí
Qi(s) (Aumento del flujo de entrada repentinamente) H(s) (Altura del nivel en el tanque El sistema de control automático Nivel en un tanque – Lazo abierto (sin control) (tiempo de estabilización = 16.06 min de acuerdo al ejemplo anterior) Nivel en un tanque – Lazo cerrado (con control) + - Controlador Variable controlada Valor deseado Acción de control
La ecuación del controlador • ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID
+ - Variable controlada Valor deseado Acción de control El sistema de control automático Nivel en un tanque – Lazo cerrado (con control) (el tiempo de estabilización para el sistema controlado es de 4 min, a partir del cambio en la entrada)
La respuesta del sistema de controlde nivel • Comparación del sistema en lazo abierto (sin control) y en lazo cerrado (con control) Con control Sin control
jw x o o x x Principales funciones a obtener de una ecuación diferencial: G(s) y Y(s) Al aplicar la Transformada de Laplace a una ecuación diferencial, dos expresiones son de gran interés: 1) Y(S): La función respuesta de un sistema. (incluye las c.i. y a la función forzante) ; Función de transferencia del sistema (considera c.i.=0 y no se sustituye la función forzante. Tanto G(s) como Y(s) estan formadas por los términos:
jw X -0.1 jw o X X -0.3 -0.1 0 G(s)yY(s) Para la ecuación diferencial Obtener: a) G(s)y, b) Y(s) Solución:
2.4 0.8 t jw o X X -0.3 -0.1 0 Obtención del valor inicial y final de y(t) Polo dominante
Gráfica aproximada de y(t) a partir de Y(s) Un horno que se encuentra a 80°C se apaga para su enfriamiento. Considere que la relación Temperatura-flujo combustible, es representada por la ecuación Diferencial: 200y´(t) + y(t) = K u(t). Obtenga, y(0) y y() 80 ºC 0 ºC t Teorema de valor inicial: Teorema del valor final: