270 likes | 785 Views
INTEGRAL TAK TENTU. ANTI TURUNAN DAN INTEGRAL TAK TENTU RUMUS-RUMUS INTEGRAL TAK TENTU INTEGRASI DENGAN SUBSTITUSI INTEGRAL BAGIAN DEMI BAGIAN. 7.1 Anti turunan dan integral tak tentu Pada bab terdahulu kita telah membahas turunan dari suatu
E N D
INTEGRAL TAK TENTU • ANTI TURUNAN DAN INTEGRAL TAK TENTU • RUMUS-RUMUS INTEGRAL TAK TENTU • INTEGRASI DENGAN SUBSTITUSI • INTEGRAL BAGIAN DEMI BAGIAN
7.1 Anti turunandan integral taktentu Padababterdahulukitatelahmembahasturunandarisuatu fungsi, yaitujikadikatahui f(x) makaprosesdifferensiasi dari f(x) akanmenghasilkanturunan f(x) danditulisdengan f’(x). • Padababinikitaakanmembahaskebalikandariprosesdifferensiasiataulebihdikenaldenganprosesintegrasi . • Jikapadaprosesdifferensiasimenghasilkanturunanmaka • padaprosesintegrasiakanmenghasilkan anti turunan. Misaldiketahuifungsi f makaprosesintegrasiadalahprosesmenentukan F(x) sedemikianrupasehingga F’(x) = f(x). F(x) dinamakan anti turunandari f(x).
Sebagaicontoh F(x) = x3adalah anti turunan f(x) = 3x2 , karena , Akantetapimasihterdapatbanyak anti turunandari x3, seperti x3 + 1, x3 + , x3 – e dll. Jadidapatdisimpulkanbahwasetiap (x3 + bilangankonstan) merupakan anti turunan ( disebutjuga primitif ) dari 3x2. Jikabilangankonstankitalambangkan dengan C maka anti turunandari 3x2adalah x3 + C. • Prosesuntukmenentukan anti turunandari f(x) disebutprosesintegrasidanditulisdalambentuk,
Simbol “∫”disebuttanda integral danpersamaan 7.1 dibaca “integral taktentudari f(x) terhadap x adalah F(x) ditambah bilangankonstan”. f(x) adalahintegran, F(x) + C adalah anti turunandari f(x), C adalahkonstantaintegrasi, sedangkan faktordxmenunjukkanbahwapeubahintegrasiadalah x. 7.2 Rumus-rumus integral taktentu
V. Rumus-rumusteknis Berikutdiberikanrumus-rumusteknik integral yang bersifat standardandapatdipakailangsunguntukmenentukan anti turunan (primitif) darisuatufungsi.
Contoh 7.1 Selesaikan Penyelesaian
Contoh 7.2 Penyelesaian Contoh 7.3
7.3 Integrasidengansubstitusi Rumus-rumus integral taktentu yang telahdijelaskanpada pasal 7.2 hanyadapatdigunakanuntukmengevaluasi integral- integral darifungsi yang sederhanasaja. • Sehinggatidakdapatdigunakanuntukmengevaluasi integral seperti ∫ dxatau ∫sin3x dx. Padapasalinikitaakanmenggunakanmetodeuntukmngubah variabeldariintegran agar menjadibentukstandar. • Dari rumusterdahulutelahdiketahuibahwa, Jika h(x) adalahfungsikomposisiFog maka h(x) = F(g(x)). • Sehingga,
(*) Jika u = g(x) du = g’(x)dx (**) • Substitusi (*) ke (**) didapat,
Contoh 7.4 Penyelesaian • Misal u = 1–2x du = –2 dx Contoh 7.5 Penyelesaian
Misal u = x2 – 1 du = 2x dx • 7.4 Integrasibagiandemibagian (Integration by parts) Dalammengevaluasi integral sering kali kitamenjumpaiintegran dalambentukperkalianfungsi-fungsi. Salahsatuteknikuntuk mengevalusai integral tersebutadalahdenganmenggunakan teknikintegrasibagiandemibagianatauseringjugadigunakan istilah integral parsial. Padasaatkitamempelajariturunan, kitatelahmengetahuibahwa,
Misal u = g(x) dan v = h(x) Persamaan 7.3 digunakanuntukmenyelesaikan integral bagian demibagianatau integral parsial. Dalammembuatpermisalan u, biasanyakitatentukanprioritas- prioritas agar penyelesaianmenjadilebihsederhana. Prioritastersebutadalahsebagaiberikut. • i) ln x • ii) xn n = bilanganbulatpositif • iii) ekx
Contoh 7.6 Penyelesaian Misal u = x du = dx v = ex dv = ex Contoh 7.7 • Penyelesaian • Misal u = ln2x dv= (x-1)dx
Contoh 7.8 Penyelesaian Misal u = x2 dv = sinxdx du = 2x dx v = –cosx
Misal u = 2x dv = cosxdx du = 2 dx v= sin x = 2x sinx + 2 cosx +C (**)
Substitusi (**) ke (*) didapat Contoh 7.9 Penyelesaian : Misal u = ex dv = cosxdx du = ex dx v = sinx
Misal u = ex dv = sinxdx du = ex dx v = –cos x Substitusi (**) ke (*) didapat,