1 / 20

Funciones reales

Funciones reales

Download Presentation

Funciones reales

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. f(x) f(x) + g(x) g(x) x 1 Suma y diferencia de dos funciones • Dadas dos funciones f y g, para todo x que pertenece al dominio de ambas funciones se define: • Suma: (f + g) (x) = f(x) + g(x). Por tanto: Dom(f + g) = Dom(f)  Dom(g) • Diferencia: (f - g) (x) = f(x) - g(x). Por tanto: Dom(f - g) = Dom(f)  Dom(g) Final

  2. EJEMPLO_1 DE FUNCIÓN SUMA Sea f(x) = x+1 y g(x) = 1 / ( x – 1). Dom f(x) = R , pues para cualquier x є R existe una imagen o valor de f(x) Dom g(x) = R – {1} , pues cuando x=1  g(1) = 1/0 = ∞ , que no existe. Sea (f + g)(x) = f(x) + g(x) = x+1 + 1 / ( x – 1) = (x2 – 1 +1) /(x-1) = x2 / (x-1) Como se ve Dom (f+g)(x) = R – {1} , intersección de los dominios. La función suma es posible efectuarla en todo R excepto en x=1 EJEMPLO_2 DE FUNCIÓN SUMA Sea f(x) = √x y g(x) = √-x Dom f(x) = R+ , pues x debe ser positivo para que exista una imagen o valor de f(x) Dom g(x) = R- , pues x debe ser negativo para que exista una imagen o valor de f(x) Sea (f + g)(x) = f(x) + g(x) = √x +√-x Como se ve Dom (f+g)(x) = 0, intersección de los dominios. La función suma sólo existe cuando x=0 Apuntes 1º Bachillerato CT

  3. Dom (-f) Dom (f) y =- f(x) y = f(x) 2 Función opuesta Si f es una función, se define su función opuesta -f de la siguiente forma: (-f)(x) = - f(x) siendo el dominio de -f el mismo que el de f (x, f(x)) (x, -f(x)) Final

  4. puntos con imagen negativa y = f(x) y = |f(x)| 3 Valor absoluto de una función Si f es una función, se define el valor absoluto de f, |f|, como: |f|(x) = |f(x)|, para todo x que pertenece al dominio de f. Conocida la gráfica de y = f(x), ¿cómo construir la gráfica de y = |f(x)|? Simetrizamos las partes negativas respecto al eje OX Final

  5. 4 Producto y cociente de dos funciones • Dadas dos funciones f y g, para todo x que pertenece al dominio de ambas funciones se define: • Producto: (f . g) (x) = f(x) . g(x). • Por tanto: Dom(f . g) = Dom(f)  Dom(g) • Dadas dos funciones f y g, para todo x que pertenece al dominio de ambas funciones y g(x)  0 se define: • Cociente: (f / g) (x) = f(x) / g(x). Por tanto: • Dom(f / g) = Dom(f)  Dom(g) - {x  R : g(x)  0} Final

  6. EJEMPLO_1 DE FUNCIÓN PRODUCTO Sea f(x) = x – 1 y g(x) = 1 / ( x – 1). Dom f(x) = R , pues para cualquier x є R existe una imagen o valor de f(x) Dom g(x) = R – {1} , pues cuando x=1  f(1) = 1/0 = ∞ , que no existe. Sea (f . g)(x) = f(x) . g(x) = ( x – 1) . 1 / ( x – 1) = (x– 1) / (x - 1) = 1 A pesar de que el resultado, (f.g)(x) = 1) es una constante, independiente de x , el Dom (f .g)(x) = R – {1} , intersección de los dominios. EJEMPLO_2 DE FUNCIÓN PRODUCTO Sea f(x) = √x - 1 y g(x) = √ 2 - x Dom f(x) = V x є[1 , +∞) Dom g(x) = V x є (-∞ , 2] Sea (f .g)(x) = f(x) . g(x) = √x-1 .√2-x = √ - x2 + 3x - 2 Como se ve Dom (f+g)(x) = [1, 2], intersección de los dominios. Apuntes 1º Bachillerato CT

  7. g f R R R x (2x-1)2 x 2x-1 = t t2 = (2x-1)2 g R R R f Rec(g) Rec(fog) Rec(f) Dom(g) Dom(fog) Dom(f) 5 Composición de funciones La función h(x) = (2x - 1)2 es la composición de dos funciones: g(x) = 2x-1 y f(t) = t2 Final h(x) = f(g(x)) = f(2x-1) = (2x - 1)2 = (f o g)(x) Dominio de la composición de funciones • El dominio de fog está formado por los x tales que • x está en el dominio de g • g(x) está en el dominio de f

  8. Sea f(x) y g(x) dos funciones reales de variable real. Llamamos función COMPUESTA a alguna de las siguientes expresiones: (f o g)(x) = f [ g (x) ] ,, (g o f)(x) = g [ f (x) ] COMPOSICIÓN DE FUNCIONES g f X Z Y g(x) x f(g(x) fog Apuntes 1º Bachillerato CT

  9. Ejemplo_1 Sea f(x) = 1 / x ,, g(x) = x2 - 1 (f o g)(x) = f [ g (x) ] = 1 / (x2 – 1) (g o f)(x) = g [ f (x) ] = (1 / x) 2 – 1 = (1 / x2) – 1 = ( 1 - x2) / x2 Ejemplo_2 Sea f(x) = √ x ,, g(x) = x2 (f o g)(x) = f [ g (x) ] = √ x2 = x (g o f)(x) = g [ f (x) ] = (√ x)2 = x Son muy pocas las funciones en que se cumpla (f o g)(x) = (g o f)(x) Ejemplo_3 Sea f(x) = sen x ,, g(x) = x2 – 1 (f o g)(x) = f [ g (x) ] = sen (x2 – 1) (g o f)(x) = g [ f (x) ] = (sen x)2 – 1 Apuntes 1º Bachillerato CT

  10. Ejemplo_4 3 Sea f(x) = √ x ,, g(x) = √ x2 3 6 3 (f o g)(x) = f [ g (x) ] = √ (√ x2 ) = √ x2 = √ x 3 3 (g o f)(x) = g [ f (x) ] = √ (√ x)2 = √ x Son muy pocas las funciones en que se cumpla (f o g)(x) = (g o f)(x) Ejemplo_5 Sea f(x) = sen x ,, g(x) = x2 – 1 ,, h(x) = √x (f o g o h)(x) = f [ g (h(x)) ] = sen ((√ x)2 – 1) = sen (x – 1) (g o f o h)(x) = g [ f (h(x)) ] = (sen √ x) 2 – 1 A veces entran en juego tres o más funciones para la composición de las mismas. Se han hecho dos de los seis ejemplos posibles. Apuntes 1º Bachillerato CT

  11. 6 Funciones inyectivas Un función f tiene la propiedad de la recta horizontal en un dominio D, si para todo valor c del recorrido de la función, la recta y = c corta a la gráfica de f en un solo punto. f no tiene la propiedad de la recta horizontal f tiene la propiedad de la recta horizontal Formulación algebraica de la propiedad de la recta horizontal: una función f es inyectiva en D si para a,b  D tal que f(a) = f(b) se tiene que a = b Final

  12. (f(x), x) • (f(x), x) • (x, f(x)) • (x, f(x)) Función inversa Si f inyectiva, la función inversa f, escrita f -1, satisface x = f -1(y)  y = f(x) • Como consecuencia: • El dominio de f es el recorrido de f -1 • El recorrido de f -1es el dominio de f • Si (x, y) está sobre la gráfica de y = f(x), (x, y) está sobre la gráfica de f -1. Por tanto las gráficas de ambas funciones son simétricas respecto a la bisectriz del primer cuadrante. Final f -1(x) f -1(x) f(x) f(x)

  13. Sea y = f(x) una función real de variable real. Llamamos función INVERSA a la expresión y = f -1 (x) Condición: Si f(a) = b  f -1 (b) = a Relaciones entre una función y su inversa: (f -1 o f )(x) = f -1 [ f (x)] = x (f o f -1 )(x) = f [ f -1 (x) = x Es decir, que (f -1 o f )(x) = (f o f -1 )(x) = x Las gráficas de dos funciones inversas son simétricas respecto a la bisectriz del primer cuadrante, o sea respecto a la recta y = x Una función tiene función inversa sólo si cualquier línea horizontal corta a la gráfica una vez como máximo. FUNCIÓN INVERSA DE OTRA Apuntes 1º Bachillerato CT

  14. Para hallar la función inversa, si la tiene, se despeja la variable x en la ecuación y= f(x) y después se intercambian las x por las y. Ejemplo 1 Sea f(x) = x2 - 1 y = x2 – 1  x = y2 – 1  y2 = x + 1  y = +/- √(x+1) La función resultante No es función, por lo tanto la función dada no tiene inversa. Ejemplo 2 Sea f(x) = 1 / (x – 2) y = 1 / (x – 2)  x = 1 / (y – 2)  x.y – 2.x = 1  y = (1 + 2.x) / x Luego f -1 (x) = (1 + 2.x) / x es la inversa de la función dada. Comprobemos: (f o f -1)(x) = 1 / ([(1 + 2.x) / x] – 2) = x (f -1 o f)(x) = (1 + 2.[ 1 / (x – 2)]) / [1 / (x – 2)] = x Apuntes 1º Bachillerato CT

  15. Ejemplo 3 Sea f(x) = sen x - 1 y = sen x – 1  x = sen y – 1  sen y = x + 1  y = arc sen (x + 1) Luego f -1 (x) = arc sen (x + 1 ) Comprobemos: (f o f -1)(x) = sen [arc sen (x+1)] – 1 = (x + 1) – 1 = x (f -1 o f)(x) = arc sen (sen x – 1 + 1) = arc sen (sen x) = x Ejemplo 4 Sea f(x) = √ (x – 1) y = √ (x – 1)  x = √ (y – 1)  x 2= y – 1  y = x2+ 1 Luego f -1 (x) = x2+ 1 Comprobemos: (f o f -1)(x) = √ (x2+ 1– 1) = √ x2 = x (f -1 o f)(x) = [√ (x – 1)] 2+ 1 = x – 1 + 1 = x Apuntes 1º Bachillerato CT

  16. Ejemplos gráficos 1 y 2 y = - 2.x y = 2.x + 1 y = - x / 2 y = (1/2).x - 2 En color rojo f(x) y en color azul f-1(x), o viceversa. Apuntes 1º Bachillerato CT

  17. Ejemplos gráficos 3 y 4 y = x2 +1 y = ex y = ln x y = √ (x-1) En color rojo f(x) y en color azul f-1(x), o viceversa. Apuntes 1º Bachillerato CT

  18. M' es cota superior de f(x) en D = R m' es cota inferior de f(x) en D = R El supremo S, es la menor de las cotas superiores M'' es cota superior de f(x) en D = R m'' es cota inferior de f(x) en D = R El ínfimo I, es la mayor de las cotas inferiores 8 Funciones acotadas • Una función y = f(x) está acotada superiormente (inferiormente) en un conjunto D si existe un número M (m) tal que f(x)  M (m f(x)) para todo x de D. Se dice que M (m) es una cota superior (inferior). • Una función acotada superior e inferiormente se dice que está acotada S y = f(x) I y = g(x) • y = f(x) está acotada • y = g(x) no está acotada Final

  19. f(y) ] b ] b [ a [ a x y x y 9 Crecimiento y decrecimiento de una función f(x) f(y) f(x) Final Función creciente en [a, b] Función decreciente en [a, b] f(x) < f(y) para todo x e y de [a, b] f(x) < f(y) para todo x e y de [a, b]

  20. D S t s T 10 Máximo y mínimo de una función • El máximo de una función f en D es el mayor de los valores que toma f en D. • El mínimo de una función f en D es el menor de los valores que toma f en D. Máximo, de valor S en el punto s, de f(x) en el conjunto D Mínimo, de valor T en el punto t, de f(x) en el conjunto D Final

More Related