1 / 23

Universidad Autónoma de Yucatán Facultad de Economía Finanzas Corporativas

Universidad Autónoma de Yucatán Facultad de Economía Finanzas Corporativas. Introducción a la valuación: Valor del dinero en el tiempo. LE Miguel Ángel Viana Dzul. Valor Futuro y procesos de composición ( o capitalización). Valor Futuro

clea
Download Presentation

Universidad Autónoma de Yucatán Facultad de Economía Finanzas Corporativas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Universidad Autónoma de Yucatán Facultad de Economía Finanzas Corporativas Introducción a la valuación: Valor del dinero en el tiempo LE Miguel Ángel Viana Dzul

  2. Valor Futuro y procesos de composición ( o capitalización) • Valor Futuro Cantidad de dinero que vale una inversión después de uno o más período de tiempo. • A) Inversiones de un período Suponga que usted invierte 100 dólares en una cuenta de ahorros que paga 10% de interés anual. ¿Qué cantidad tendrá dentro de un año? Tendrá 110 dólares; éstos serán iguales a su capital original de 100 dólares más los 10 de intereses que gane. Decimos entonces que los 110 dólares son el valor futuro de 100 dólares invertidos a un año al 10%; lo que significa que 100 dólares de hoy valdrán 110 dentro de un año, dado que la tasa de interés es de 10 por ciento.

  3. En términos generales, si usted invierte a un periodo, a una tasa de interés de r,su inversión crecerá a (1 + r)por cada peso invertido. En nuestro ejemplo, r es de 10%, y su inversión crecerá a 1 + .10 = 1.1 dólares por cada dólar invertido. Usted invirtió 100 pesos en este caso, por lo que terminará con $100 X 1.10 = $110. • B) Inversiones de más de un período Volviendo a nuestra inversión de 100 dólares, ¿qué cantidad acumulará dentro de dos años, suponiendo que la tasa de interés no cambia? Si deja la totalidad de los 110 dólares en el banco, ganará $110 X .10 = $11 de intereses durante el segundo año, y usted tendrá un total de $110 + 11 = $121. Estos 121 dólares son el valor futuro de 100 dentro de dos años al 10%.

  4. Estos 121 dólares tienen cuatro partes. La primera parte es el capital original de 100 dólares; la segunda son los 10 de intereses que ganó en el primer año, y la tercera son los otros 10 dólares que obtuvo en el segundo año, lo cual da un total de 120 dólares. El último dólar que usted adquiere (la cuarta parte) son los intereses que usted ganará en el segundo año sobre el interés pagado en el primero: $10 X .10 = $1. • Proceso de composición o de capitalización Proceso de acumular intereses sobre una inversión a lo largo del tiempo para ganar más intereses • Intereses sobre intereses Intereses ganados sobre la reinversión de los pagos anteriores de intereses

  5. Interés compuesto Interés que se gana tanto sobre el capital inicial como sobre los intereses reinvertidos a partir de periodos anteriores • Interés simple Interés que se gana tanto sobre el monto del capital invertido

  6. Otra manera de contemplar esta situación es que después de un año usted estará invirtiendo efectivamente 110 dólares a un 10% anual. Éste es un problema de un solo periodo, en el que usted dispondrá al final de 1.10 dólares por cada dólar invertido, o $110 X 1.1 = $121 en total. Esto se repetiría en las siguientes situaciones $121 = $110 x 1.1 = ($100 x 1.1) x 1.1 = $100 x ( 1.1 x 1.1) = $100 x 1.12

  7. el valor futuro de 1 peso invertido a lo largo detperiodos a la tasa rpor periodo es: Valor futuro = $1 X (1 + r)t La expresión (1 +r) t recibe algunas veces el nombre de factor de interés a valor futuro (o simplemente factor a valor futuro) por 1 peso invertido al r % durante t periodos, y puede abreviarse como FIVF (r, t). En nuestro ejemplo, ¿cuánto valdrían sus 100 pesos después de cinco años? . primero podemos calcular el factor de valor futuro relevante como: (1 + r) t = (1 + .10)5 = 1.105 = 1.6105 De tal modo, sus 100 dólares crecerán hasta alcanzar un valor de: $100 X 1.6105 = $161.05

  8. Valor futuro ($) 160 161.05 150 146.61 140 133.10 130 121 120 110 110 Tiempo ( años) 1 2 3 4 5

  9. Valor futuro de un dólar 7 6 5 4 3 2 1 20% 15% 10% 5% 0% Tiempo (años) 1 2 3 4 5 6 7 8 9 10

  10. Valor Presente (caso de un periodo) Valor actual de los flujos futuro de efectivo descontados a la tasa de descuento apropiada. La formula es VP = 1 x 1 ( 1 + r )t Ó VP = 1 (1+r )t

  11. Ejemplo: Suponga que requiere 400 dólares para comprar libros de texto el año siguiente. Usted puede ganar 7% sobre su dinero. ¿Qué cantidad de fondos tendrá que aportar? Necesitamos conocer el valor presente de 400 dólares dentro de un año a 7%. Procediendo como en el ejemplo anterior tendríamos: Valor presente x 1.07 = $400 Podemos ahora encontrar el valor presente: Valor presente = 400/1.07= 373.83 En forma alternativa : Valor presente = $400 x (1/1.07) = $373.83 De este modo, 373.83 dólares es el valor presente. Una vez más, esto significa simplemente que invertir esta cantidad durante un año a 7% dará como resultado que usted tenga un valor futuro de 400 dólares.

  12. Valor presente ( Para periodos múltiples) VP = 1 x 1 ( 1 + r )t Ó VP = 1 ( 1 + r ) t La cantidad que aparece entre corchetes 1 / (1+r )t recibe el nombre de factor de descuento

  13. Para ilustrar lo anterior, suponga que usted necesitará 1 000 dólares dentro de tres años y que puede ganar 15% sobre su dinero. ¿Cuánto tendrá que invertir hoy? Para responder a esta pregunta, tenemos que determinar el valor presente de 1 000 dólares en tres años al 15%. Hacemos esto descontando tal cantidad hacia el pasado durante tres periodos al 15%. Con estas cifras, el factor de descuento es: 1/(1 + .15)3 = 1/1.5209 = .6575 La cantidad que usted deberá invertir es, por lo tanto: $1000 X .6575 = $657.50 Afirmamos que la cantidad de 657.50 dólares es el valor presente o el valor descontado de I 000 dólares que se recibirán dentro de tres años al 15 por ciento.

  14. Valor Presente de 1 dólar 1.00 r = 0% .90 .80 r = 5% .70 .60 .50 r = 10% .40 .30 r = 15% .20 .10 r = 20% Tiempo (años) 1 2 3 4 5 6 7 8 9

  15. Valor Presente Vs. Valor Futuro Factor de valor futuro = (1 +r )t Factor de valor presente = 1/ (1 +r )t Si VFt representa el valor futuro después de t periodos, entonces la relación entre el valor presente y el valor futuro podría escribirse como: VP X (1 + r)t= VFt VP = VFt/(l + r)t= VFt X [l/(1 + r)t] Nos referiremos a este último resultado con el nombre de ecuación básica del valor presente.

  16. Suponga que su compañía propone comprar un activo en 335 dólares y que esta inversión es muy segura. Usted vendería el activo dentro de tres años en 400 dólares. Por otro lado, sabe que podría invertir los 335 dólares en alguna otra parte al 10% con muy poco riesgo. ¿ Qué piensa de la inversión propuesta? Ésta no es una buena inversión. ¿Por qué no? Porque si invirtiera 335 dólares en otra parte al 10%, después de tres años, la inversión crecería a: $335 x (1+r) t=$335 x1.13 = $335 x 1.331 = $445.89 Desde el momento en que la inversión propuesta tan solo paga 400 dólares, no resulta tan buena. Otra forma de ver el mismo concepto es regresando al valor presente de 400 dólares dentro de tres años, al 10 por ciento: $400 x [1/(1 + r)t] = $400/1.13 = $400/1.331 = $300.53 Esto nos indica que sólo tendríamos que invertir alrededor de 300 dólares, y no 335, para obtener 400 dólares dentro de tres años

  17. Determinación de la tasa de descuento Forma de encontrar el valor de r para un inversión de un período VP x (1 +r ) = VF 1 + r = VF / VP r = VF / VP -1 Suponga que esta considerando una inversión a una año. Si aporta 1250 recuperará 1350 ¿Qué tasa de interés le estará pagando esta Inversión. Partiendo de la ecuación básica, el valor presente es de 1250, el valor futuro de 1350, el plazo de tiempo involucrado es de un periodo , por lo tanto tenemos: 1250 = 1350/ (1 + r)1 1 + r = 1350 / 1250 = 1.08 r = 1.08-1= 8%

  18. Forma de encontrar el valor de r para una inversión de múltiples períodos VP x (1 +r )t = VF (1 + r )t = VF / VP r = t VF / VP -1 Suponga que usted ha calculado que necesitará unos 80000 dólares para mandar a su hijo a la universidad dentro de ocho años, y actualmente tiene cerca de 35 000 dólares. Si gana 20% anual, ¿conseguirá usted su objetivo? ¿A qué tasa alcanzaría su meta en forma exacta? Si ganara 20%, el valor futuro de sus 35 000 dólares dentro de ocho años sería de: VF = $35000 x 1.208 = $35000 x 4.2998 = $150493.59

  19. Por lo tanto, lograría su objetivo con facilidad. La tasa mínima es la r desconocida en la siguiente expresión: VF = $35000 x (1 + r)8= $80000 (1 + r)8= $80000/35000 = 2.2857 1+ r = 8 2.2857 = 1.1089 r = 1.1089 -1 = 10.89%

  20. Formas para encontrar el numero de períodos (1+r )t =VF/VP In(1+r)t =In VF/VP t .In(1+r) =In VF – In VP t = In VF-In VP/ In(1+r) Suponga que ha estado ahorrando para comprar la empresa Godot Company. El costo total será de diez millones de dólares. En este momento, usted tiene aproximadamente 2.3 millones. Si gana 5% sobre su dinero, ¿cuánto tiempo tendría que esperar? A una tasa de 16%, ¿cuánto esperaría A una tasa de 5%, tendría que esperar mucho tiempo. Partiendo de la ecuación básica del valor presente, tenemos: $2.3 millones = $10 millones/1.05t t = ln 10 - ln 2.3/ ln 1.05 t = 30 años

More Related