1.01k likes | 2.23k Views
Sayı kavramının tarihsel gelişimi ve Doğal sayılar. İlk insanlar, rakam ve sayı kullanma ihtiyacı duymuşlardır. Avladıkları hayvanların veya sürülerdeki koyunların sayılarını belirlemek için yaşadıkları mağara duvarlarına veya bir ağaç dalına çentikler yapmışlardır.
E N D
İlk insanlar, rakam ve sayı kullanma ihtiyacı duymuşlardır. • Avladıkları hayvanların veya sürülerdeki koyunların sayılarını belirlemek için yaşadıkları mağara duvarlarına veya bir ağaç dalına çentikler yapmışlardır. • Bazen de ipe düğüm atma veya çakıl taşlarını tercih etmişlerdir.
İnsanlar ihtiyaçlarını daha iyi karşılamak için ilk çağlardan beri karşılaştırma adını verdiğimiz bir eylemde bulunurlar. • Karşılaştırma ile daha iyiyi, daha güzeli, daha kuvvetliyi, yeterliyi, uygunu seçmek mümkün olur. Karşılaştırma yapabilmek miktarı ya da özelliği anlamak, miktarı anlama da sayıları kullanmakla gerçekleşir.
İlkçağlardan beri kullanmakta olduğumuz onluk sayı sistemine kadar çok değişik sayı sistemleri icat edilmiş ve kullanılmıştır. • Günümüzde dünyada genelde onluk sistem kullanılmaktadır. Bunun yanı sıra halen kullanılan başka sayı sistemleri de vardır.
Mısırlılarda sayı sistemi • Mısırlıların sayı sistemi onluk sistemdir. • Örneğin, • 10= “I” işareti • 1= ”^” işareti olarak kullanılmıştır. • Örneğin 53= III II ^^^ • 100= g sembolü kullanılmıştır. • Örneğin 653=ggg ggg III II ^^^ • Aşağıdaki işlemleri mısır sayı sistemine göre sembolize ediniz ve işlemi çözünüz. • a) 165= • b) 456=
Sümerlilerde sayı sistemi • Sümerlilerde sayılarını altmışlık sayma sisteminde yazmışlardır.
Bu sistemde, • 1 = küçük koni, • 10 = bir bilye • 60 = bir büyük koni • 600= delikli büyük koni kullanmışlardır.
Romalılarda sayı sistemi • Romalılar da onluk sisteme göre işlem yapmışlardır. • X= 10 • C= 10x10=100 • M= 10X10X10=1000
5 sayısı için özel bir şekil oluşturduktan sonra 5’in katlarını da gruplandırdılar. V=5 L=50 D=500 • Romalılarda sıfır ve basamak kavramı yoktur. • Sadece toplama ve çıkarma işlemleri yapmışlardır.
Yazım şekilleri şöyledir; • I, X, C harfleri yan yana en fazla 3 defa yazılır. • V, L, D, M harfleri birden fazla yan yana yazılmaz. • III=1+1+1=3 XX=20 • Küçük sayıları gösteren rakamlar büyük sayıların soluna yazılırsa çıkarılarak; sağına yazılırsa toplanarak okunur. VII=7 IV=4
V, L, D rakamları çıkarma amacıyla kendinden büyük rakamların soluna yazılmaz. • I yalnız V ve X’ten; • X; yalnız L ve C den; • C yalnız D ve M den çıkarılır. • Bir rakamın veya rakamların üzerine çizilen bir çizgi bu sayının 1000 katının iki yatay çizgi 1000 000 katının alındığını gösterir.
Aşağıdaki işlemleri Roma rakamlarına göre düzenleyin. a) 165=CLXV • b) 456=CDLVI • c) XIV=14 • d) LIV=54
Sayı Kavramı ve Öğretimi • “Sayı kavramı” tüm matematik programının yapı taşını oluşturur. • Ancak; yapılan araştırmalar, sayı ve işlemleri öğrenmenin çocuklar için karmaşık bir süreç olduğunu göstermiştir.
Daha öncede bahsedildiği gibi, insanoğlunun kullandığı ilk sayılar sayma sayıları olup, çocuk da ilk defa sayma sayılarını kullanır. • Sayma sayıları kümesine 0 (sıfır) ilâve edildiğinde doğal sayılar kümesi elde edilir.
Birinci sınıfta doğal sayı kavramıyla ilgili çalışmalara başlamadan önce bazı hazırlık çalışmalarının yapılması gereklidir. • Bu çalışmalar; • ritmik saymalar, • varlıklar arasındaki ilişkiler, • küme ve eleman kavramlarıyla ilgili temel bilgi ve beceriler ile azlık-çokluk karşılaştırmalarını • kapsar.
Ritmik Sayma Çalışmaları • Doğal sayı kavramının öğretimiyle ilgili etkinliklerinin başlangıcı ritmik saymadır. • Ritmik sayma mekâniktir; bu yüzden ritmik saymaya mekânik sayma da denir. • Ritmik sayma anlamlı değildir, ancak çocuğun sayı adlarıyla karşılaşmasını sağlar; bu yüzden sayı kavramının kazanılmasında ilk adım sayılır.
Mini mini birler Çalışkandır ikiler Tembeldir üçler Mutludur dörtler Somurtkandır beşler Altı altını aldılar Yediler yemeğini yediler Sekizler sekseğimi sildiler Dokuzlar mezun olup gittiler On, yirmi, otuz, …., yüz Dere tepe düz Ördek suda yüz Vak vak vak Koca adam kalk Lambaları yak İşlerine bak
Etkinlik: İleri, geri saymalar, ritmik saymalar • İşlemler: • Makarnaları 2’şer, 2’şer ayırarak sayınız. • Avucunuza 3 Makarna alınız, sonra diğer makarnaları bunun üzerine ikişer ikişer alarak sayınız. • Avucunuza bir miktar makarna alınız. Geriye doğru birer birer, ikişer ikişer geriye doğru sayarak bırakınız. • Birinci sınıfta çocuğun avucuna 30 makarna sığar. Sizin avucunuz tahminen kaç makarna sığar? • Grup üyelerinden kimin avucuna en fazla fasulye sığar? Geriye doğru sayarak kontrol ediniz.
Sizde dört kişi bir araya gelin ve sayma ve ritmik sayma için uygun etkinlikler oluşturun. • Etkinlik adı: • Amacı: • Süre: • Materyaller • Yapılacak İşler:
İlköğretim matematik programında birinci sınıfın hedefleri arasında • 100’e kadar 1’er, 5’er, 10’ar ritmik sayma • 30’dan geriye sayabilme, • 20’den geriye 2’şer ritmik sayma yer almaktadır.
Varlıklar arasındaki ilişkiler,az-çok, yakın-uzak, altında- üstünde… • Sizde dört kişi bir araya gelin varlıklar arasındaki ilişkileri kavratmaya yönelik etkinlikler oluşturun. • Etkinlik adı: • Amacı: • Süre: • Metryaller • Yapılacak İşler:
Sınıflandırma-sıralama çalışmaları • Ne gibi etkinlikler yapabiliriz? • Büyükten küçüğe sıralayalım • Küçükten büyüğe sıralayalım • Renklerine göre sınıflayalım • Boyutlarına göre sıralayalım • Yapıldığı maddelere göre sıralayalım • Şekillerine göre sıralayalım
Etkinlik: İki özelliğe göre sınıflama • İşlemler1 :Carrol diyagramı • Tablodaki ? Yerlerin doldurulması • Seçilen her hangi bir parçanın yerine doğru konulması için kaç özelliğin incelendiğinin açıklanması • Carrol diyagramında satıra turuncu, pembe gibi başka renkler konulabilir mi?
Carrol diyagramında sütuna paralel kenar, beşgen konulabilir mi*
Her grup ağaç diyagramını kendi nesnelerine göre sınıflama yapsın. • Ağaç diyagramında ilk olarak renk yerine şekil dalaması konulabilir mi? (eğer çizilebilirse buna uygun diyagram çizilmesi) • Ağaç diyagramında çizime üçüncü bir özellik ile (örneğin büyük, küçük) devam edilebilir mi? (eğer çizilebilirse buna uygun diyagram çizilmesi) • Bu diyagramın Carrol diyagramı ile karşılaştırılması.
Sayı kavramına hazırlayıcı ikinci sayma çalışması, • sayı adlarının birer objeye karşı getirilmesidir; bu, anlamlı saymanın başlangıcıdır. • Çocuk bu sayma türüyle de okula gelmeden önce karşılaşmıştır. • Evde annesi, babası ve öteki büyükleri, çeşitli yollarla onlara sayı saydırmışlardır. • Parmakları, odadaki sandalye, koltuk gibi eşyaları, evdeki bireyleri, adımları ve oyuncaklarını sayma bunlardan bazılarıdır.
Çocuklar saymalarda, bire-bir eşlemeden yararlanır. • Bu saymanın • sıralı olması, • objelerin atlanmaması ve • bir sayıya birden çok objenin karşı getirilmemesine özen gösterilmelidir.
Bu saymada birebir eşleme uygun şekilde yapıldığından sayma doğrudur.
Bu sayma, doğal sayıların sırasına uyulmadığından yanlıştır.
Bu sayma, her sayı bir objeye karşı gelmediğinden yanlıştır.
DOĞAL SAYI KAVRAMI VE BİR BASAMAKLI DOĞAL SAYILARIN ÖĞRETİMİ • Doğal sayı kavramıyla ilgili öğrenme-öğretme etkinlikleri bir basamaklı sayılarla başlar. • Bir basamaklı doğal sayılarla ilgili öğrenme-öğretme etkinliklerine "1" sayısıyla başlanılmalı; 2, 3, 4, 5, 6, 7, 8,9 sayılarıyla devam edilmeli; • "0" sayısı, 9'dan sonraya bırakılmalıdır. • Bu sayıların her biri ayrı bir dersin konusu yapılmalıdır.
Doğal Sayıların Kuruluşları • Doğal sayıların kuruluşunda iki temel yol vardır: • 1) denk küme kavramından yararlanılır. Örneğin:
Bu kümelerin çoklukların adı 1 ‘dir. • Böyle kümelerin hepsinin 1 olma özeliği vardır.
Bu kümelerin çokluklarının adı 2‘dir. • Böyle kümelerin hepsinin 2 olma özeliği vardır. • Benzer çalışmalar diğer sayılar için de yapılabilir. Ve buradan; • Bir doğal sayı, birebir eşlenebilen kümelerin ortak özelliğidir sonucuna varılır.
Boş kümelerin ortak özelliği olarak “0” (sıfır) da elde edilince doğal sayıların kümesi kurulmuş olur.
2) Peano aksiyomudur. • A) sıfır “0” bir doğal sayıdır. • B) her doğal sayıya onun ardışığı adı verilen bir doğal sayı karşılık gelir. • C) sıfır hiçbir doğal sayının ardışığı olamaz. • D) farklı doğal sayıların ardışığı da farklıdır. • E) D, N’nin bir alt kümesi olsun. Eğer sıfır D’nin bir elemanı ise bir sayının D de bulunması ardışığının da D d bulunmasını gerektiriyorsa D=N’dir.
Sayıların öğretimi • Birinci sınıfta rakamları okuma ve yazma 20’ye kadar sayılarla işlem yapma ve 100’e kadar sayma yapabilme hedeflenmiştir.
1’den 9’a kadar olan sayıların öğretimi üç basamakta gerçekleşir. • Öğrenilen her sayı ile ilgili küme şeması duvara asılarak bir dizi meydana getirilir.
Birinci basamak • Sayı ile ilgili küme şemasının tahtaya asılması • Sayının rakamla ve yazıyla tahtaya yazılması ve rakamın tanıtılması • Başka küme şemalarının gösterilmesi ve öğrencilerin bu kümelerden aynı özelliği gösterenleri bulmaları ve nedenini açıklamaları şeklinde sürdürülebilir.
Yandaki dairenin içinde kaç tane kalp var? Yazıyla ve rakamla altına yazın.
Yandaki dairenin içine altında yazan sayı kadar top resmi çizip boyayın.
1sayısı için yapılan çalışmalar 2 içinde benzer şekilde tekrarlanır.
Sayıyı kendinden önceki ve sonraki sayı ile ilişkilendirme