1 / 17

probleem P 1 is reduceerbaar tot P 2 als  afbeelding  :P 1  P 2 zo dat:

algoritme in O(|I| qr ) time voor I in P: doe eerst A  P /* geeft I' in SAT van size O(| | r ) doe dan A. alg. A O(| | q ). yes/no.  P (I)  SAT. A  P O(| | r ). I  P. probleem P 1 is reduceerbaar tot P 2 als  afbeelding  :P 1  P 2 zo dat:

Download Presentation

probleem P 1 is reduceerbaar tot P 2 als  afbeelding  :P 1  P 2 zo dat:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. algoritme in O(|I|qr) time voor I in P: doe eerst AP/* geeft I' in SAT van size O(| |r) doe dan A alg. A O(| |q) yes/no P(I)SAT AP O(| |r) IP probleem P1 is reduceerbaar tot P2 als  afbeelding :P1  P2zo dat: I yes-instantie van P1 (I) yes-instantie van P2 als ook:  polytime-algoritme, zeg A,met inputs IP1 en outputs (I)P2 dan P1 is 'polynomial‑reducable' tot P2 , notatie: P1 P2 TheoremCook (1971): SAT is -compleet, i.e.: each problemP of  is polynomial reducable to SAT Corollary If SAT (or another -compleet problem) is solved by a polytime-algorithm A, then all problems P are polynomial solvable (=)Proof:

  2. Observation 1 Given a problem P in  If SAT (or more general a known -compleet problem) is polytime-transformable to P, then P is -compleet Observation 2 Given a problem P in  If P is polytime-transformable to another polunomially-solvable problem Q in , then P also is in  Next we use observation 1 for the problems P=CLIQUE and P=NODE-COVER. First we introduce these problems

  3. YES for k=4 YES for k=3 CLIQUE Instance: graph G=(V, E) ; number k; Question: Is there a ‘clique’ subgraph HG with |V(H)|>=k NO for k=5

  4. Is there a clique of size >= 4 ?

  5. Is there a clique of size >= 4 ?

  6. Satisfiability (formeel) Instance:2n booleans in sets B={b1, b2, ..., bn}en B={b1, b2, ..., bn}, [n-tal B={b1,..., bn} is vrij, n-tal B={b1, b2, ..., bn} is negatie dwz: vrij te kiezen: b1, ..., bn{true,false} en bt = NOT bt voor t=1,2..n] m ‘or-expressies’ C1, C2, ..., Cm met 1 of meer elementen in BB Question:Kan menb1 t/m bn zo kiezen ( truth-assignment)datelke 'clause' C1, C2, ..., Cmtrue wordt. (satisfying all the clauses) bv n=3, m=4 met C1=b1 or b3 or b2 ; C2=b2or b1; C3=b3 or b1; C4=b2 assignment b1=b2=b3=true mislukt; assignment b1=true; b2=b3=false mislukt; assignment b2=true, b1=b3=false satisfies all clauses

  7. elke clause correspondeert met knopenregel, 1 knoop voor elke boolean • alle kanten bestaan behalve: • tussen knopen (booleans) van dezelfde clause • tussen booleans die elkaars negatie zijn Een probleem P zal  -compleet zijn als: 1) P is in  2) voor een bekend  -compleet P2 geldt: P2  P voorbeeld: Clique is  -compleet 1) yes-certificaat is subset K met k knopen; O(n2) algoritme checkt kantexistentie 2) we tonen aan SAT CLIQUE : Zij B={b1,…,bn}; C1,C2, …,Cm, een SAT-instantie. bv: B={b1,b2,b3} en m=4 met C1=b1 or b3 or b2 ; C2=b2or b1; C3=b3 or b1; C4=b2

  8. YES:  V’ for k=5 YES:  V’ for k=3 NODE-COVER Instance: graph G=(V, E) ; number k ; Question:can one cover E with a subset V’ of k or less nodes

  9. G’s edges on upper-left node DEFINITION: The co-graphG=(V, co-E)of G=(V, E) has the same node set,but the complement set co-E as edge set: co-E ={(i,j): (i,j)E} Theorem: V’ is a node-cover of E(G) if and only if V\V’ forms a clique in G COROLLARY: CLIQUE  NODE-COVER map I=<(V, E), k> of CLIQUE to (I)=<((V), (E)), (k)> of NODE-COVER, given as (V)=V , (E)=co-E and (k)=|V|-k

  10. CLIQUE NODE-COVERmap I=<(V, E), k> of CLIQUE to (I) of NODECOVER, where  (V,E)=(V,co-E) and (k)=|V|-k to proof:<(V, E), k> is yes instantie clique  <(V,co-E),|V|-k> yes instantie node-cover proof:node set H forms a clique in (V,E) with |H|>=k/* i.e. H is yes-certificate for I iff( i, j H: (i,j)  E ) and ( |H|>=k ) iff( i, j H: (i,j)Ïco-E) and ( |H|>=k ) ifffor each edge (i, j) of (V,co-E) node i is in V\H or node j is in V\Hand |V\H|<=|V|-k iff V\H is a node cover of (V, co-E) with |V\H|<=|V|-k/* i.e. V\H is yes-certificate for (I), (k)

  11. SAT ILP (remember ILP: instance: (c,A,b) en k; question Is max {cx: Ax<=b, x  Zn}>=k) SAT Instance: 2n booleans in sets B={b1, b2, ..., bn}en B={b1, b2, ..., bn}, m ‘or-expressies’ C1, C2, ..., Cm met 1 of meer elementen in BB vb n=3, m=4 met C1=b1 or b3 or b2 ; C2=b2or b1; C3=b3 or b1; C4=b2 Trafo: Introduceer een 0-1 variabele xb voor iedere b  B en een voorwaarde en 0-1-variabele yi voor de tevredenheid van iedere clause We illustreren op het voorbeeld: Kies k=m max y1+…+ym x1+x3+(1-x2) >= y1 .. x2 >= y4 xj , yi  {0,1}

  12. YES:  V’ for k=5 YES:  V’ for k=3 NODE-COVER Instance: graph G=(V, E) ; number k ; Question:can one cover E with a subset V’ of k or less nodes

  13. SAT(isfiability)Instance:2n booleans in sets B={b1, b2, ..., bn}en B={b1, b2, ..., bn}, vrij te kiezen: b1, ..., bn{true,false} en bt = NOT bt voor t=1,2..n]m ‘or-expressies’ C1, C2, ..., Cm met 1 of meer elementen van BB Question:Kan menb1 t/m bn zo kiezen ( truth-assignment)datelke 'clause' C1, C2, ..., Cmtrue wordt. (satisfying all the clauses) A special case of a problem restricts itself to instances of special type Special cases of  -compleet problems may lie in  3-SAT restricts itself to instances of SAT where each clause <=3 booleans: 3-SAT Instance:2n booleans in sets B={b1, b2, ..., bn}en B={b1, b2, ..., bn}, vrij te kiezen: b1, ..., bn{true,false} en bt = NOT bt voor t=1,2..nm ‘or-expressies’ C1, ..., Cm elk met <=3 elementen vanBBQuestion:Kan menb1 t/m bn zo kiezen ( truth-assignment)datelke 'clause' C1, C2, ..., Cmtrue wordt. (satisfying all the clauses)

  14. SET-COVER Instance:m sets S1, S2, ... Sm subsets of {1,2,.., n}; a number k (< m) [note: Each i=1,2..n lies in one or more of the subsets (i.e. S1,…Sm covers {1,2…n}) ] Question:Is there a subcover of {1,2,.., n} with k subsets or less NODE-cover  SET-COVER: Basis set {1,…n} correspond to the edges e1 , en of (V,E) assume |E|=n subset Si defined for each i  V is the set of numbers (edges) incident to i EXACT-COVER Instance:m sets S1, S2, ... Sm subsets of {1,2,.., n}; [note: Each i=1,2..n lies in one or more subsets (i.e. S1,…Sm covers {1,2…n}) ] Question:Is there a subcover of {1,2,.., n} with k<m subsets s.t. each i (=1,2…n) is in exactly one of these k subsets Weighted SET-COVER Instance:m subsets S1, ... Sm of {1,2,.., n} with weights w1, …wm; number k Question:Is there a subcover of total weight less than k HAMILTONIAN CYCLE (=special case of TSP with all edge weights 1) Instance: graph G=(V, E) with n nodes; Question: Is there H E with (|H|=n) edges as a tour visiting every node exactly once

  15. MAX-CUT Instance:network (N, E) with edge weights cij >= 0; number k; Question:Is there a cutset [S, N\S] with capacity PARTITIONING Instance:indexedset of numbers {w1,w2,.., wn} Question:can one partition the index set {1..n}=I  J such that: SUBSET SUM Instance:indexedset of numbers {w1,w2,.., wn} ; number k Question: Is there a subset of indices I such that GRAPH COLORING Instance: graph G=(V, E) ; number k; Question:Can we give each node i a color c(i) {1,2..k} s.t. c(i)<>c(j) if (i,j)  E (i and j have different colors when they are connected by an edge)

  16. 2Dimensional Matching (2DM) Instance:set V={1,2,…,n}; P VxV a set (of more than n) pairs Question:Is there a subset P'={(x1,y1), … (xn,yn)} in P with {x1,..,xn}=V and {y1,..,yn}=V 3Dimensional Matching (3DM) Instance:set V={1,…n}; T VxVxV a set of triplets Question:Is there a subset T ’ = {(x1,y1, ,z1,), … (xn,yn,zn,)} of T with with {x1,..,xn}=V and {y1,..,yn}=V and {z1,..,zn}=V Alternative definition: 2Dimensional Matching (2DM) (and analogously fo 3DM) Instance:two different sets X={x1,..,xn} and Y ={y1,..,yn} both with n elements; P XxY a set of pairs (x,y) Question:Is there a subset P'={(xi1,yj1), … (xin,yjn)} of P with {xi1 ,.., xin}=X and {yj1 , .., yjn}=Y (i.e., all x- and y-coordinates in P' are different) Application (2DM) X={x1,..,xn} a set of gentlemenand Y ={y1,..,yn} a set of ladies; P XxY a set of matching pairs (x,y) that like each other enough (to get married) One can marry off all persons, make n (legally) married couples if and only if there is a subset P'={(xi1,yj1), … (xin,yjn)} of P with {xi1 ,.., xin}=X and {yj1 , .., yjn}=Y (i.e., no xi nor yi is married off twice)

  17. SAT(isfiability) 3-SAT clique ILP graph coloring node cover 2-DM Ham-Cycle (&TSP) exact cover set cover subset sum min-cost flow weighted set cover partitioning Max-cut 3-DM knapsack Steiner problem problemen en mogelijke trafo's die NP-completeness aantonen (of case: 2DM of juist niet) pijl dik zwart: op college bewezen; pijl dun zwart: zie R. KARP '72; pijl rood: zelf bewijzen als serie 7A uitwerking inleveren van minstens 2 van de vier

More Related