1 / 27

Thermodynamik 2. 4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik

Thermodynamik 2. 4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie

Download Presentation

Thermodynamik 2. 4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Wdh. letzte Stunde kein Wärmekontakt zu Umgebung (Q=0),Temp. variabel W = ∆U Welchen Wert hat CV für ein ideales Gas ? Problem:

  2. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Wdh. letzte Stunde kein Wärmekontakt zu Umgebung (Q=0),Temp. variabel W = ∆U

  3. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Ansatz: liefert: für ideales Gas Wdh. letzte Stunde kein Wärmekontakt zu Umgebung (Q=0),Temp. variabel W = ∆U Problem: wie groß ist T2?

  4. Wdh. letzte Stunde für ideales Gas Fläche unter Adiabate kleiner: Adiab. rev. Expansion leistet weniger Arbeit als isotherm rev. Expansion

  5. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Wdh. letzte Stunde

  6. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen Wdh. letzte Stunde

  7. Quantenmechanik: jedes Molekül hat diskrete Energieniveaus Bsp. Schwingung: Niveaus näherungsweise äquidistant (vgl. Sprossen einer Leiter) Bsp.: Ensemble aus 30 Molekülen, N = 30 Gesamtenergie E = 30 ε6 = 6 Energie ε5 = 5 Gesucht: wahrscheinlichste Besetzung der Energieniveaus ε4 = 4 Kombination mit den meisten Möglichkeiten zeigt exponentiellen Abfall zu steigenden Energien ! ε3 = 3 ε2 = 2 ε1 = 1 ε0 = 0

  8. Quantenmechanik: jedes Molekül hat diskrete Energieniveaus Bsp. Schwingung: Niveaus näherungsweise äquidistant (vgl. Sprossen einer Leiter) Bsp.: Ensemble aus 30 Molekülen, N = 30 Gesamtenergie E = 15 ε6 = 6 Energie ε5 = 5 Gesucht: wahrscheinlichste Besetzung der Energieniveaus ε4 = 4 Kombination mit den meisten Möglichkeiten zeigt exponentiellen Abfall zu steigenden Energien ! ε3 = 3 ε2 = 2 ε1 = 1 ε0 = 0

  9. Quantenmechanik: jedes Molekül hat diskrete Energieniveaus Bsp. Schwingung: Niveaus näherungsweise äquidistant (vgl. Sprossen einer Leiter) Bsp.: Ensemble aus 30 Molekülen, N = 30 Gesamtenergie E = 15 ε6 = 6 Energie ε5 = 5 Gesucht: wahrscheinlichste Besetzung der Energieniveaus ε4 = 4 Kombination mit den meisten Möglichkeiten zeigt exponentiellen Abfall zu steigenden Energien ! ε3 = 3 ε2 = 2 ε1 = 1 ε0 = 0

  10. Quantenmechanik: jedes Molekül hat diskrete Energieniveaus Bsp. Schwingung: Niveaus näherungsweise äquidistant (vgl. Sprossen einer Leiter) Bsp.: Ensemble aus 30 Molekülen, N = 30 Gesamtenergie E = 30 ε6 = 6 Energie ε5 = 5 Gesucht: wahrscheinlichste Besetzung der Energieniveaus ε4 = 4 Kombination mit den meisten Möglichkeiten zeigt exponentiellen Abfall zu steigenden Energien ! ε3 = 3 ε2 = 2 ε1 = 1 ε0 = 0

  11. Quantenmechanik: jedes Molekül hat diskrete Energieniveaus Bsp. Schwingung: Niveaus näherungsweise äquidistant (vgl. Sprossen einer Leiter) Bsp.: Ensemble aus 30 Molekülen, N = 30 Gesamtenergie E = 45 ε6 = 6 Energie ε5 = 5 Gesucht: wahrscheinlichste Besetzung der Energieniveaus ε4 = 4 Kombination mit den meisten Möglichkeiten zeigt exponentiellen Abfall zu steigenden Energien ! ε3 = 3 ε2 = 2 ε1 = 1 je größer die Gesamtenergie E (und damit die Temperatur), desto höhere Niveaus werden besetzt ε0 = 0

  12. innere Energie Um Wärmekapazität Cvm Zweiniveausystem, ε0 = 0, ε1 = 1 kJ/mol ε1 = 1 kJ/mol ε0 = 0 kJ/mol

  13. äquidistantes Vielniveausystem, (= Schwingung) ε0 = 0, ε1 = 1 kJ/mol, ε2 = 2 kJ/mol,... innere Energie Um Wärmekapazität Cvm 8.314 J/mol K

  14. 300 K Wärmekapazität Cvm von N2 als Funktion der Temperatur (schematisch) Cv,m/R Schwingung Rotation Translation T

  15. Regel von Dulong-Petit: molare Wärmekapazität vieler Festkörper bei Raumtemperatur: ≈3 R (≈ 25 J/mol K) experimentelle Werte (Atkins,3. Aufl., Tabelle 2.12.) Eisen 25.1 J/mol K 3.02 R Kupfer 24.4 J/mol K 2.93 R Silber 25.4 J/mol K 3.06 R Gold 25.4 J/mol K 3.06 R Phosphor (weiß) 23.8 J/mol K 2.86 R Antimon 25.2 J/mol K 3.03 R

  16. Dulong-Petit

  17. C ~ T 3

  18. Einstein-Modell des Festkörpers Atome schwingen um ihre Gitterplätze mit einer festen Frequenz

  19. Thermodynamik 2.4. Reale Gase 2.5. Erster Hauptsatz der Thermodynamik innere Energie, Arbeit, Wärme Vorzeichenkonvention Arbeit in der Thermodynamik - Adiabatische Expansion Wärme, Wärmekapazität, Enthalpie Berechnung von U,H,Cp,CV für ein Ideales Gas - kinetische Gastheorie Berechnung von U,H, Cp,CV für reale Gase (reale Stoffe) aus molekularen Eigenschaften Messung von U,H für reale Stoffe -Verknüpfung von U, H mit leicht messbaren Größen

  20. Quelle: Atkins

  21. pA,TA pE, TE Quelle: Atkins

  22. Inversions- und Siedetemperaturen sowie Joule-Thomson-Koeffizienten bei 298 K und 1 bar

  23. Quelle: Atkins

  24. Joule-Thomson-Koeffizient Thermischer Ausdehnungs- koeffizient Isotherme Kompressibilität 1/T 1/p 0 3/2 R 5/2 R 0 0 3/2 R 5/2 R R ideales Gas

More Related