1 / 7

FUNGSI PECAH, DIFAKTORISASI, EKSPONEN DAN LOGARITMA

FUNGSI PECAH, DIFAKTORISASI, EKSPONEN DAN LOGARITMA. OLEH: NURUL SAILA FAKULTAS EKONOMI UNIVERSITAS PANCA MARGA PROBOLINGGO Kamis , 15 Desember 2011. Fungsi Pecah. Bentuk umum : Contoh : Buatlah sketsa grafik fungsi : xy -y-x= 3 Tentukan titik2 potongnya dg sumbu-sumbu koordinat

deo
Download Presentation

FUNGSI PECAH, DIFAKTORISASI, EKSPONEN DAN LOGARITMA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FUNGSI PECAH, DIFAKTORISASI, EKSPONEN DAN LOGARITMA OLEH: NURUL SAILA FAKULTAS EKONOMI UNIVERSITAS PANCA MARGA PROBOLINGGO Kamis, 15 Desember 2011

  2. FungsiPecah Bentukumum: Contoh: Buatlahsketsagrafikfungsi: xy-y-x= 3 • Tentukan titik2 potongnya dg sumbu-sumbukoordinat • Tentukanasimtotdatardantegak • Titik2 bantu

  3. FungsiygBisaDifaktorisasi Jika f(x, y)= 0 dptdifaktorisasimenjadi g(x, y).h(x, y) makagrafiknyaterdiriatasduakurvayaitu g(x, y)=0 dan h(x, y)=0 Contoh: Buatlahsketsagrafikfungsi: y3+xy2-xy-x2=0.

  4. FungsiEksponen • Bentukumum: Y=bx, dg b>0, y>0 danxR Membuatgrafik y=bx. • Titikpotong dg sbkoordinat: • Titikpotong dg sb x (tidakada) • Titikpotong dg sb y (0, 1) • Asimtot • Datar: y = 0 • Tegak : tdkada

  5. Contoh: Buatlahsketsagrafikfungsi y = 2x.

  6. FungsiLogaritma • Fungsilogaritmamrpkinversdrfungsieksponen • Y = blog x  x=byinversdari y = bx • . Menggambargrafikfungsilogaritma dg caramenggambarfungsieksponennyaygbersesuaiankmdnmencerminkannyathdgaris y = x.

  7. TugasKelompok Buatlahsketsagrafikfungsi-fungsiberikut: • X2 + y2 - 2x - 2y – 20 = 0 • 4x2 + 9y2 – 36 = 0 • 4x2 - 9y2 - 40y + 64 = 0 • X2 + 4x – y + 4 = 0 • X2 + 2x – xy + 2y – 3 = 0 • Y2x – x - y2 – 1 = 0

More Related