1 / 8

PANGKAT, AKAR, DAN LOGARITMA

PANGKAT, AKAR, DAN LOGARITMA. WIDITA KURNIASARI, SE, ME. Pengertian Pangkat dari bilangan. Suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara beruntun Misalnya : 7 5 = 7 x 7 x 7 x 7 x 7 5 7 = 5 x 5 x 5 x 5 x 5 x 5 x 5

xerxes
Download Presentation

PANGKAT, AKAR, DAN LOGARITMA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PANGKAT, AKAR, DAN LOGARITMA WIDITA KURNIASARI, SE, ME

  2. PengertianPangkatdaribilangan • Suatuindeks yang menunjukkanbanyaknyaperkalianbilangan yang samasecaraberuntun • Misalnya: 75 = 7 x 7 x 7 x 7 x 7 57 = 5 x 5 x 5 x 5 x 5 x 5 x 5 0,35 = 0,3 x 0,3 x 0,3 x 0,3 x 0,3 105 = 10 x 10 x 10 x 10 x 10 • Notasipemangkatanberfaedah pula untukmeringkasbilangan-bilangankelipatanperkaliansepuluh yang nilainyasangatbesaratausangatkecil • Misalnya: 10-5 = 1/100.000

  3. KaidahPemangkatanBilangan • x0 = 1 (x ≠ 0) • x1 = x • 0 n = 0 • x-a = 1/xa • xa/b = b√xa • (x/y)a = xa/ya • (x a)b = xab • x2³ = x8

  4. KaidahPerkalianBilanganBerpangkat • xa. xb = xa+b • xa.ya = (xy)a • xa: xb = xa-b • xa: ya=(x/y)a

  5. AKAR • a√m = x ; jikaxa = m (x adalah basis) • contoh: 2√9 = 3 3√64= 4 • b√x = x 1/b • b√xa = xa/b • b√xy = b√xb√y • b√x/y = b√x/b√y • mb√xa ± n b√xa= (m±n) b√xa

  6. LOGARITMA • Bentukpangkat : xa = m • Bentukakar : a√m = x • Bentuklogaritma : xlog m = a Contoh : • 6log 36 = 2 • 5log 625 = 4 • 7log 49 = 2 • 3log m = 10 ; m=? • 10log 10.000 = a ; a=?

  7. KAIDAH-KAIDAH LOGARITMA • xlog x = 1 • xlog 1 = 0 • xlogxa= a • xlog ma = a xlog m • xxlog m = m • xlog m n = xlog m + xlog n • xlog m/n = xlog m - xlog n • xlog m mlog x = 1 • xlog m . mlog n . nlog x = 1

  8. LatihanSoal 1. Sederhanakanbentuk-bentukberikutini: • 45. 47.4-6 • 54 . 34 . (-6)4 2. Sederhanakandankemudianselesaikan: • 10√5 + 2√5 – 7√5 • (3√27) (5.3√125) 3. Ubahlah kedalam bentuk logaritma: • 54 • 3√64 • Apabila x dan y masing-masing adalah 100 dan 50, hitunglah: • Log xy • Log x/y Silahkan baca Buku Dumairy, Matematika Terapan Untuk Bisnis dan Ekonomi hal.29-41

More Related