1 / 3

DIFFERENSIAL TOTAL Pandang Z = f (x,y) Jika x dan y berubah

DIFFERENSIAL TOTAL Pandang Z = f (x,y) Jika x dan y berubah. x +  x y +  y. x y. Maka z juga berubah :. z +  z = f (x +  x, y +  y) = f (x +  x, y +  y) – z = f (x +  x, y +  y) – f (x,y) z = x² + xy + y². z. z +  z  z Misal.

Download Presentation

DIFFERENSIAL TOTAL Pandang Z = f (x,y) Jika x dan y berubah

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DIFFERENSIAL TOTAL Pandang Z = f (x,y) Jika x dan y berubah x +x y +y x y Maka z juga berubah : z +z = f (x +x, y +y) = f (x +x, y +y) – z = f (x +x, y +y) – f (x,y) z = x² + xy + y² z z +z z Misal z = (x +x)² + (x +x) (y +y) + (y +y)² - x² - xy - y² = … = (2x + y)x + (x + 2y)y Bentuk linier (*) darix dany xy +x² +y² Bentuk non linier (**) dari x dany + Jikax y 0 0 maka (**) 0 Bentuk linier darix dany (*) secara umum : ax + by = a dx + b dy z x z y dengan a= dan b = Page 1 of 8 9 http://www.mercubuana.ac.id kalkulus2_modul-11

  2. c.z = ( 5 – 2 ) ( -0,01 ) + 3 ( 0.02 ) + ( -0,01 ) = - 0,03 + 0,06 – 0,0002 = 0,03 – 0,0002 = 0,0298 dz = ( 5 – 2 ) ( - 0.01 ) + 3 ( 0,02 ) = - 0,03 + 0,06 = 0,03 x = 0,11 y = - 0,05 ~ z + dz d. misalkan x = 3 y=5 z +z = ? z = f ( 3,5 ) = 3.5 – 2.3 = 9 dz = ( y – 2 ) dx + x dy = ( 5 – 2 ) 0,11 + 3 ( - 0,05 ) = 0,18 f ( 3,11 ; 4,95 ) ~ z + dz = 9 + 0,18 = 9,18 Catatan : Jikax dany cukup kecil, maka nilaiz dapat didekati oleh dz Bila z fungsi bervariabel n yaitu z = f (x1, x2, …, xn) maka differensial totalnya : z x n z x1 z x 2 dx2 + … + dz = dx1 + dxn Contoh : W = 2 xy + 5 xz² + y²z + z3 dw = ? Page 3 of 8 9 http://www.mercubuana.ac.id kalkulus2_modul-11

  3. Dalil : Jika z = f (x,y) dan x = g (u,v) y = h (u.v) maka z merupakan fungsi dari u dan v dan z u z v z x z x x u x v z y z y y u y v = = . . + + . . Contoh : x² y² dengan x = uev y = ue-v z = In z u z v Cari dan Secara Umum :  = f (x,y,z, ….) dimana Jika x = f (u, v, w, … ) y = g ( u, v, w, …) z = h (u, v, w, …) ... Maka : x u x v x w y u y v y w z u z v z w  u  v   w  x  x  x  y  y  y  z  z  z +… +… +… = = = . . . + + + . . . + + + . . . Page 5 of 8 9 http://www.mercubuana.ac.id kalkulus2_modul-11

More Related