1.06k likes | 3.27k Views
Bioactive Compounds from Marine Microbes. Bioactive Compounds from Algae (Part 2) Cyanobacteria (“Blue-Green Algae”) Bioactive Compounds from (Other) Marine Bacteria Bioactive Compounds from Marine Fungi. Algae. Monera (“Prokaryotes”). Protista. Plantae. Fungi. Animalia. Algae.
E N D
Bioactive Compounds from Marine Microbes Bioactive Compounds from Algae (Part 2) Cyanobacteria (“Blue-Green Algae”) Bioactive Compounds from (Other) Marine Bacteria Bioactive Compounds from Marine Fungi
Algae Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
Algae Prokaryotic Kingdom Monera (Bacteria) Cyanobacteria (“Blue-Green Algae”) Eukaryotic Kingdom Protista Dinophyta (“Dinoflagellates”) Raphidophyta (“Raphidophytes”) Bacillariophyta (“Diatoms”) Chrysophyta (“Golden Algae”) Chlorophyta (“Green Algae”) Phaeophyta (“Brown Algae”) Rhodophyta (“Red Algae”) “Microalgae” “Macroalgae”
Eukaryotic HAB Toxins Syndrome Source SpeciesTarget Domoic Acid “Amnesic Shellfish Pseudonitzschia spp. Glutamate Poisoning” (ASP) Receptors Saxitoxin “Paralytic Shellfish Alexandrium tamarense Inhibits Poisoning” (ASP) Sodium Channels Brevetoxin “Neurotoxic Shellfish Karenia brevis Activates Poisoning” (ASP) (and others) Sodium “Florida Red Tide” Channels Ciguatoxin (and others) “Ciguatera FishGambierdiscus toxicus Activates Poisoning” (CFP) Sodium Channels Pectenotoxin (and others) “Diarrhetic Shellfish Dinophysis spp. ? Poisoning” (CFP)
Polyketides from Dinoflagellates “Polyether Ladders” e.g. PbTx-1 Macrolides Linear Polyethers e.g. PTX-1 e.g. Okadaic Acid
Polyketide Synthases (PKSs) are Modular Enzymes Enoyl reductase (ER) NADPH NADP+ b-ketoacyl synthase (KS) Dehydrase (DH) b-ketoacyl reductase (KR) CO2 H2O
Polyketide Synthase (PKS) Acyl Carrier Protein (ACP) Acyl Transferase (AT) Enoyl Reductase (ER) Dehydratase (DH) Ketosynthase (KS) Ketoreductase (KR) AT Organism PKSI PKSII Prorocentrum lima + + P. hoffmanianum + - Karenia brevis + - Symbiodinium sp. + - Amphidinium operculatum + - KS AT ACP PKSI Primers Snyder et al. (2003) Mar. Biotechnol., 5 (1):1-12.
Prokaryotic Algae Cyanobacteria (“Blue-Green Algae”) Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
Cyanobacteria (“Blue-Green Algae”) Photosynthetic Bacteria Oldest Organisms on the Earth (Fossil Record - 3.5 Billions Years!) Marine, Freshwater and Terrestrial Symbiosis - e.g. Lichen Stromatolites
Pigments and Algae PBs4 Chl a1bcdCar. 2Xanth.3PC5PE6 Cyanobacteria x x x Dinoflagellata x x x x Bacillariophyta x x x x Chrysophyta x x x x Chlorophyta x x x Phaeophyta x x x x Rhodophyta x x x x 1Chl = Chlorophyll; 2Car. = Carotenoids; 3Xanth. = Xanthophylls; 4PB = Phycobilins (Phycobiloproteins); 5PC = Phyocyanin; 6PE = Phycoerythrin
Cyanobacteria as HABs First Scientific Report of Toxic Cyanobacteria: George Francis (1878) Nature Lake Alexandria, Murray River, Australia “thick scum like green oil paint, some two to six inches thick, and as thick and pasty as porridge” “Unwholesome” for cattle and other livestock that drink at the water Nodularia spumigens
Cases of Acute Poisoning by Toxic Cyanobacteria in Drinking Water L. Alexandria, Australia Livestock Poisoning Nodularia spumigens 1931 Charleston, WV Acute Gastroenteritis Unknown (Ohio River) (9,000 cases/60,000 pop.) 1966 Harare, Zimbabwe Gastroenteritis (children) Microcystis aeruginosa 1975 Sewickley, PA Acute Gastroenteritis Schizothrix calcicola (62% of 8,000 pop.) 1983 Armidale, Australia Liver damage (elevated M. aeruginosa g-glutamyltransferase) 1983 Palm Island, Australia Hepatoenteritis C. raciborskii (139 children) (cylindrospermopsin) 1993 Itaparica Dam, Brazil Gastroenteritis Anabaena, Microcystis (88 deaths, children) 1996 Caruaru, Brazil Liver failure Aphan., Oscillatoria (63 deaths) (microcystins)
Toxins from Cyanobacterial HABs Neurotoxins Hepatotoxins Dermatotoxins
Neurotoxins from Cyanobacteria: Anatoxin-a 1950s-1960s Paul Gorham and Colleagues Cultured Anabaena flos-aquae Isolated “Very Fast Death Factor” Anatoxin-a
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Acetylcholine Receptor (AChR) Synapse Acetylcholine (in vesicles)
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases + + + + + + + + - - - - - - ++ -- K+ Ca2+ Na+
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases + + + + + + + + - - - - - - ++ -- K+ Ca2+ Na+
Ca2+ SR Ca2+ PKC Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Na+ + + + + + + + + - - - - - - ++ -- K+ Ca2+ Na+
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases
Ca2+ SR Ca2+ PKC Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Na+ + + + + + + + + - - - - - - ++ -- K+ Ca2+ Na+
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Na+ + + + + + + + + - - - - - - ++ -- Acetylcholinesterase K+ Ca2+ Na+
Ca2+ SR Ca2+ PKC Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases Anatoxin-a Na+ + + + + + + + + - - - - - - ++ -- K+ Ca2+ Na+
Anatoxin-a Irreversibly Binds Acetylcholine Receptors and Inhibits Acetylcholinesterases
Neurotoxins from Cyanobacteria: Anatoxin-a(s) Anatoxin-a(s)
Anatoxin-a(s) Inhibits Cholinesterases LD50 = 20 µg/kg (in mice) vs. LD50 of Anatoxin-a = 200 µg/kg (in mice)
Neurotoxins from Cyanobacteria: Saxitoxin R4: R1R2R3 H H H STX GTX5 H H OSO3- GTX2 C1 H OSO3- H GTX3 C2 OH H H NeoSTX GTX6 OH H OSO3- GTX1 C3 OH OSO3- H GTX4 C4 Saxitoxin (STX) and Other “PSP Toxins”
= STX (or TTX) STX Binds and Blocks Voltage-Gated Sodium Channels
Hepatotoxins from Cyanobacteria: Microcystins e.g. Microcystin-LR
Microcystin Structural Diversity Over 70 Variants of MIcrocystins!
Microcystin Diversity Microcystin-LR
Microcystins (and Nodularin) Accumulate in Liver Approximately 50% of Microcystin in Liver ATP-Dependent Carrier-Mediated Transport
Microcystins and Primary Liver Cancer (PLC) Nandong District, Jiangsu Province, China Pond/ditch vs. Well as Drinking Water Supply ~ 24-Fold Higher Rate of PLC with Pond/Ditch Water 100.13 cases per 100,000 (pond/ditch) 4.28 cases per 100,000 (well) Microcystin Levels: Pond/Ditch: 60% samples positive, avg. 160 pg/mL Well: None detected Calculated 0.19 pg/day Seasonal Intake (4 mo./yr.) Yu, 1989, Primary Live Cancer, pp. 30-37; Harada et al., 1996, China Nat. Toxins, 4: 277-83; Ueno et al., 1996, Carcinogenesis 17: 1317-21
Microcystins (and Nodularins) are PP1/2a Ser/Thr Protein Phosphatase Inhibitors MacKintosh et al. (1990) FEBS Lett. 264: 187-92.
Non-Ribosomal Peptides are Characteristic of Cyanobacterial Toxins Methyl-dehydro-Ala (Mdha) Iso-D-Glu Adda D-Ala Leu Arg Iso-MeAsp
Non-Ribosomal Peptide Synthetases (NRPSs) are Modular Enzymes A = Adenylation Domain C = Condensation Domain T (PCP) = Thiolation (Peptidyl Carrier) Domain
Dermatotoxins from Cyanobacteria: Lyngbya Toxins Lynbyatoxin Aplysiotoxin
Drugs from Cyanobacteria: Curacin-A Curacin A Curacin A Binds Colchicine Site of Tubulin and Inhibits Tubulin-Polymerization
Drugs from NON-MARINE Cyanobacteria: Cryptophycin Cryptophycin 52 (LY355703)
Cryptophycin 52 in Clinical Trials (Phase II) Clinical Response of Women with Ovarian Cancer Treated with LY355703 (n=24) ResponseNo.% Complete Remission 0 0 Partial Remission 3 12.5 Stable Disease 7 29.2 Progressive Disease 14 58.3 D’Agostino et al. (2006) Intl. J. Gyn. Cancer 16: 71-76.
Bioactive Compounds from Heterotrophic Marine Bacteria Monera (“Prokaryotes”) Protista Plantae Fungi Animalia
Bacteria: Kingdom Monera Shape Cocci = Sphere-Shaped Bacilli = Rod-Shaped Spirilla = Spiral-Shaped “Growth Form” Staph = Bacteria in Clusters Strep = Bacteria in Chains
Classification of the Bacteria (i.e. Kingdom Monera) Gram-Negative Gram-Positive
Classification of the Bacteria (i.e. Kingdom Monera) Eubacteria Gram-Positive Bacteria w/ Cell-Walls Gram-Negative Bacteria w/ Cell-Walls Bacteria w/o Cell-Walls (Mycoplasma) Archaebacteria