250 likes | 494 Views
Kuswanto-2013. 3. Ukuran Pemusatan Data. Segugus data. Gugus data Tidak ada informasi ??? Perlu ada karakteristik yang mencirikan gugus data tsb Ukuran pemusatan – sebuah nilai yang menggambarkan pusat dari gugus data
E N D
Kuswanto-2013 3. UkuranPemusatan Data
Segugus data • Gugus data Tidak ada informasi ??? • Perlu ada karakteristik yang mencirikan gugus data tsb • Ukuran pemusatan – sebuah nilai yang menggambarkan pusat dari gugus data • ukuran keragaman (sebaran) : sebuah nilai yang menggam-barkan sebaran dari gugus data ??? ???
Dari data tersebut • Apabila frekuensi sebagai sumbu Y • Dan nilai data sebagai sumbu X, frekuensi Nilai data, misal diameter tomat
Bila dibuat gambar distribusi Pusat (rerata) Kumpulan data yang menyebar di bawah pusat (rerata) Kumpulan data yang menyebar di atas pusat (rerata)
Dengan demikian • Diperlukankarakteristik yang mencirikansebuahgugus data • Karakteristik yang mengukurpusat data • Karekteristik yang mengukursebarandata • Karakteristikpadacontohdisebutstatistik, dankarakteristikpopulasidisebut parameter
3 .UKURAN PEMUSATAN • Suatugugus data kuantitatifperludiselidiki agar dapatdidefinisikanukuranmetrik yang menjelaskancici-ciri data tersebut. • Misalnyadicarinilaireratanya. Rerata (mean) merupakanukuranpusat data yang diurutkandariterkecilketerbesar.
Ukuran pusat (pemusatan) yang lain adalah median dan modus. • Misal : dari data sebanyak n observasi dapat ditulis : x1, x2, x3, x4, …, xn atau y1, y2, y3, y4, …, yn • Dari observasi ini biasanya kita ingin menentukan wakil atau ukuran pemusatan dari data tersebut. • Ukuran pemusatan mungkin sama atau tidak sama dengan salah satu x1,x2, …, xn.
3.1. Mean (rerata) Rerata dilambangkan dengan x (x bar = rerata contoh) didefinisikan sebagai x1 + x2 + … + xn n x = -------------------------- = xi/n n i=1 Rerata contoh dilambangkan dengan x, sedang rerata populasi
Perhatikan n n a. bXi = bx1 + bx2 +… + bxn = b(x1+x2+…+xn) = b Xi i=1 i=1 n b. a = a + a +…+ a = na i=1 n n n n c. (xi - a)² = (xi2 - 2axi + a2) = xi2 - 2a xi + na² i=1 i =1 i =1 i=1 • Khusus a = x, setelah diinsersikan ke dalam persamaan tersebut, maka nilainya akan = • xi2 - ( xi)2/n yang apabila dibagi n-1 dikenal ragam (varian)
Contoh mean • Data : x1=2, x2=1, x3=5, x4=4, x5=5, x6=2 2 + 1 + 5 + 4 + 5 + 2 • Makax = ------------------------------ = 19/6 = 3 1/6 6 • Bila digambarkan dengan diagram titik . : . : --------------------------------------- 1 2 3 4 5 6 7
Apabiladisusundistribusifrekuensi xi menyatakan nilai dari angka fimenyatakan frekuensi untuk nilai xi Misalnya : f1 = 1, f5 = 2
Penggunaanrerata • Hati-hatidenganpenggunaanstatistikrerata. • Contoh, apabiladiketahuibahwadari 50 bahanpeledakdinamitakanmeledak rata-rata 3 detiksejakpengaitnyadilepas. Bisajadisatuataubeberapadinamitakanmeledak 1 detiksejakpengaitdilepas. Apabilapadasaattersebuttidaksegeradilemparkandapatmencelakaisipelempar.
3.2. Modus • Modus adalah data yang mempunyai frekuensi terbesar. • Kumpulan data bisa mempunyai satu modus, dua atau beberapa modus atau bahkan tidak mempunyai modus. • Untuk contoh data diatas Xi : 2, 1, 5, 4, 5, 2 mempunyai dua modus, yaitu 2 dan 5 • Kerjakan contoh lain
Contoh modus • Dalambentukkalimat, contoh modus adalah “penyebabmenurunnyahasilpanenadalahcurahhujantinggi”. Curahhujantinggitersebutmerupakan modus penyebabturunnyahasilpanen.
3.3. Median • Median dari sekumpulan data adalah data yang ditengah, bila jumlah data ganjil, atau mean dari dua data yang ditengah, bila jumlah data genap, data data telah diurutkan dari terkecil sampai terbesar. • Misal : untuk contoh data diatas Xi : 2, 1, 5, 4, 5, 2. Untuk mencari median data harus diurutkan dari terkecil ke terbesar menjadi Xi : 1, 2, 2, 4, 5, 5 • Maka mediannya adalah (2+4)/2 = 3.
Penggunaanrerata, modus, median • Hati-hatimenggunakanrerata, modus dan median • Tidaksemua data dapatdigunakanrerata, modus atau median. • Untuktujuantertentumungkinhanyadiperlukan median bukanrerata. Lihatcontohsoal.
3.4. Kuartil, Desil, Persentil • Jika segugus data dibagi menjadi 4 bagian yang sama banyak, sesudah disusun menurut urutan nilainya, maka bilangan pembaginya disebut kuartil. • Jika dibagi menjadi 10 bagian yang sama, maka didapat 9 pembagi dan tiap pembagi disebut desil. • Jika dibagi menjadi 100 bagian yang sama akan menghasilkan 99 pembagi yang dinamakan persentil.
Latihandandiskusi • Calculate the mean and median for each of the following data sets : • i. 4, 7, 3, 6, 5, 4, 5, 7, 9 • ii. 24, 28, 36, 30, 24, 29, 30, 32, 31 • iii. -2, 1, -1, 0, 3, -2, 1, 1, 2, 2, 3 • iv. Find data of plant number in your faculty! • Mengapa rata-rata lebihstabildaripada median? • Dalamsebuahcontohterdapathasilpengamatan yang bernilai nol. Statistikmanasaja yang dapatdihitung? Mengapa? • Dalamjangkawaktu 4 bulan, hargaapelmenjadidua kali lipat. Berapapersen rata-rata kenaikanhargatiapbulan?
5. Bagaimanahubunganantara rata-rata, median dan modus. Kapankahtandasamaakanberlaku? 6. The monthly income in thousand rupiahs for seven administrative staff members of a faculty in a University are 950, 775, 925, 2500, 1150, 850, 975, 2000, 1800, 1900, 1750 and 2100 From this : • Calculate the mean and median salary! and • Which of the two is preferable as a measure of center, and why? Express your reasons!
7. Given here are the mean and median salaries (thousand by month) of machinists employed by two competing companies, Longseed Co and Smallseed Co. • Assume that the salaries are set in accordance with job competence, and that the overall quality of worker is about the same in the two companies. • Which company offers a better prospect to a machinist having superior ability? Explain your answer. • Where can a medium quality machinist expect to earn more? Explain your answer.
8. These problems are properties on the mean and median. • If a fixed number c is added to all measurements in a data set, then the mean of the new meausurements is (c+ the original mean). Take the sample of data! • If all measurements in a data set are multiplied by a fixed number d then the mean of the new meausurements is d x (the original mean). Verify this property for sampel of data set. • These properties also hold for median. Verify these for the data set and the numbers c and d.