1 / 46

Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002

This lecture covers the Ebers-Moll model, Gummel-Poon static npn circuit model, BJT characterization, and MOS capacitor and MOSFET characterization. It also includes parameter extraction techniques for various model equations and sensitivities.

emiler
Download Presentation

Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and CharacterizationEE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. aFIF aRIR JCAC = IC -JEAE = IE E C B Ebers-Moll Model(No G-R curr) (Fig. 9.30 Semiconductor Physics & Devices, by Neamen, Irwin, Chicago, 1997, * throughout)

  3. Source of Ebers-Moll Equations (E)

  4. Source of Ebers-Moll Equations (C)

  5. Common emitter current gain, b

  6. Charge componentsin the BJT From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.

  7. Gummel-Poon Staticnpn Circuit Model C RC Intrinsic Transistor IBR B RBB ILC ICC-IEC= IS(exp(vBE/NFVt) - exp(vBC/NRVt)/QB B’ IBF ILE RE E

  8. Recombination/GenCurrents (FA)

  9. IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB QB= {+ [+ (BFIBF/IKF + BRIBR/IKR)]1/2}  (1 - vBC/VAF - vBE/VAR )-1 Gummel Poon npnModel Equations

  10. VAF ParameterExtraction (fEarly) Forward Active Operation iC = ICC= (IS/QB)exp(vBE/NFVt), where ICE= 0, and QB-1= (1-vBC/VAF-vBE/VAR )* {IKF terms}-1, so since vBC = vBE - vCE, VAF = iC/[iC/vBC]vBE iC iB vCE vBE 0.2 < vCE < 5.0 0.7 < vBE < 0.9

  11. Reverse Active Operation iE iB vEC vBC 0.2 < vEC < 5.0 0.7 < vBC < 0.9 VAR ParameterExtraction (rEarly) iE = -IEC= (IS/QB)exp(vBC/NRVt), where ICC= 0, and QB-1= (1-vBC/VAF-vBE/VAR ) {IKR terms}-1, so since vBE = vBC - vEC, VAR = iE/[iE/vBE]vBC

  12. iC RC vBC - iB + + RB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC+ iBRB- iCRC vBEx = vBE+iBRB+(iB+iC)RE iB = IBF + ILE = ISexp(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexp(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms}-1

  13. Definitions ofNeff and ISeff • In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff={dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)]

  14. Forward GummelData Sensitivities a Region a - IKFIS, RB, RE, NF, VAR Region b - IS, NF, VAR, RB, RE Region c - IS/BF, NF, RB, RE Region d - IS/BF, NF Region e - ISE, NE vBCx = 0 c iC b d iB e iC(A),iB(A) vs. vBE(V)

  15. Simple extractionof IS, ISE from data Data set used • IS = 10f • ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext

  16. Simple extraction of NF, NE from fg data iB data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iC data NEeff vs. vBEext

  17. Simple extractionof BF from data • Data set used BF = 100 • Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A< iD < 3.53A • Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC

  18. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE+ iBRB- iERE vBCx = vBC+iBRB+(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms}-1

  19. Sample rg data forparameter extraction • IS=10f • Nr=1 • Br=2 • Isc=10p • Nc=2 • Ikr=.1m • Vaf=100 • Rc=5 • Rb=100 iB data iE data iE, iB vs. vBCext

  20. Simple extractionof BR from data • Data set used Br = 2 • Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A< iE < 14.4A • Minimum value of Neff =1 for same range iE/iB vs. iE

  21. Simple extractionof IS, ISC from data Data set used • IS = 10fA • ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext

  22. Simple extraction of NR, NC from rg data Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375 Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205 iB data iE data NEeff vs. vBCext

  23. Fully biased n-MOScapacitor VG Channel if VG > VT VS VD EOx,x> 0 e- e- e- e- e- e- n+ n+ p-substrate Vsub=VB Depl Reg Acceptors y 0 L

  24. Flat band with oxidecharge (approx. scale) Al SiO2 p-Si +<--Vox-->- q(Vox) Ec,Ox q(ffp-cox) Ex q(fm-cox) Eg,ox~8eV Ec EFm EFi EFp q(VFB) Ev VFB= VG-VB, when Si bands are flat Ev

  25. Flat-band parametersfor p-channel (n-subst)

  26. Fully biased n-channel VT calc

  27. Fully biased n-channel VT calc

  28. Q’d,max and xd,max forbiased MOS capacitor Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns)

  29. Fully biased p-channel VT calc

  30. I-V relation for n-MOS (ohmic reg) ohmic ID non-physical ID,sat saturated VDS VDS,sat

  31. Universal draincharacteristic ID VGS=VT+3V 9ID1 ohmic saturated, VDS>VGS-VT VGS=VT+2V 4ID1 VGS=VT+1V ID1 VDS

  32. Characterizing then-ch MOSFET VD ID D G B S VGS VT

  33. Substrate bias effect on VT (body-effect)

  34. Body effect data Fig 9.9**

  35. Values for fmswith silicon gate

  36. SPICE mosfet model levels • Level 1 is the Schichman-Hodges model • Level 2 is a geometry-based, analytical model • Level 3 is a semi-empirical, short-channel model • Level 4 is the BSIM1 model • Level 5 is the BSIM2 model, etc.

  37. Level 1 Static Const.For Device Equations Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) - q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case

  38. Level 1 Static Const.For Device Equations b = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) ISD = as given, or = JS*AD ISS = as given, or = JS*AS

  39. Level 1 Static Device Equations vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds)

  40. Level 2 StaticDevice Equations Accounts for variation of channel potential for 0 < y < L For vds < vds,sat = vgs - Vfb - PHI + g2*[1-sqrt(1+2(vgs-Vfb-vbs)/g2] id,ohmic = [b/(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2g[vds+PHI-vbs)1.5-(PHI-vbs)1.5]/3

  41. Level 2 StaticDevice Eqs. (cont.) For vds > vds,sat id = id,sat/(1-LAMBDA*vds) where id,sat = id,ohmic(vds,sat)

  42. Level 2 StaticDevice Eqs. (cont.) Mobility variation KP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)]UEXP This replaces KP in all other formulae.

  43. References • CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. • M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. • M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. • Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997

More Related