320 likes | 1.22k Views
FRACCIONES Y DECIMALES. ESPAD III * TC 3. FRACCIONES Y DECIMALES. PASO DE FRACCIÓN A EXPRESIÓN DECIMAL En una fracción dividimos numerador entre denominador. Puede ocurrir: 1.- Que la división tiene un número finito de decimales Cociente = Números decimales EXACTOS
E N D
FRACCIONES Y DECIMALES ESPAD III * TC 3
FRACCIONES Y DECIMALES • PASO DE FRACCIÓN A EXPRESIÓN DECIMAL • En una fracción dividimos numerador entre denominador. Puede ocurrir: • 1.- Que la división tiene un número finito de decimales • Cociente = Números decimales EXACTOS • 2.- Que la división NO es exacta A partir de la coma se repiten las cifras del cociente • Cociente = Números decimales PERIODICOS PUROS • 3.- Que la división NO es exacta Tras la coma hay cifras que no se repiten y después cifras que se repiten. • Cociente = Números decimales PERIODICOS MIXTOS • Todo número fraccionario se puede escribir como número decimal. • Los números racionales son números decimales exactos o periódicos. • Todo número decimal periódico se puede escribir como fracción, llamada fracción GENERATRIZ.
EJEMPLOS • 1.- La fracción 7 / 4 • Dividimos 7 entre 4 c = 1,75 Expresión decimal EXACTA • 2.- La fracción 2 / 3 • Dividimos 2 entre 3 c = 0,666666 Expresión decimal periódica PURA • El 6 es la única cifra que se repite El 6 se llama PERIODO • 3.- La fracción 8765 / 900 • Dividimos 8765 entre 900 c = 9,738888888 Expresión decimal periódica MIXTA • Tras la coma, el 73 no se repite. Se llama ANTEPERIODO. • El 8 es la única cifra que se repite El 8 es el PERIODO
PASO DE EXPRESIÓN DECIMAL A FRACCIÓN. • Regla memorística: • Como numerador de la fracción se pone el número decimal periódico sin coma, menos la parte entera y decimal no periódica sin coma; y por denominador tantos nueves como cifras decimales tenga la parte periódica, seguidos de tantos ceros como cifras tenga la parte decimal no periódica. • Ejemplos: • __ 503 - 5 498 166 • 5'03 = ---------- = ------ = ------- ; • 99 99 33 • _ 523 – 52 471 157 • 52'3 = ------------- = ------ = ------ ; • 9 9 3
Ejemplos: • __ 3 - 0 3 1 • 0'03 = ---------- = ------ = ---- ; • 99 99 33 • ___ 151 – 0 151 • 0‘151 = ---------- = -------- ; • 999 999 • _ 503 – 50 453 151 • 5'03 = -------------- = ------ = ---- ; • 90 90 30 • __ 7075 – 70 7005 1401 467 • 7'075 = -------------- = ---------- = -------- = ------ ; • 990 990 198 66
PROCESO NO MEMORÍSTICO • Veamos con un ejemplo: • __ • X = 5 , 03 • X = 5,0303030303030…. • 100. X = 503,0303030303030.… • Restamos por un lado 100.X – X , • y por otro lado 503,0303030… - 5´030303030…. • Queda: 99.X = 503 – 5 , pues la parte decimal, al ser igual, se elimina en la resta. • Despejando finalmente X tenemos: • 503 – 5 498 166 • X = ---------- = -------- = ------, que si se puede hay que simplificar. • 99 99 33
Veamos otro ejemplo: • __ • x = 5, 4 03 • x = 5,40303030303030…. • 10.x = 54,0303030303030… • 1000.x = 5403,03030303030… • Restamos por un lado 1000.x – 10.x , • y por otro lado 5403,030303… - 54,030303…. • Queda: 990.x = 5403 – 54 , pues la parte decimal, al ser igual, se elimina en la resta. • Despejando finalmente x tenemos: • 5403 - 54 5349 • x = -------------- = ----------- • 990 990
RESOLUCIÓN DE PROBLEMAS • ENUNCIADO_1 • En una clase los 3 / 5 de los alumnos son rubios, la séptima parte son morenos, y el resto son pelirrojos. • ¿Qué fracción de alumnos son pelirrojos?
… resolución … • Cálculos: • 3 / 5 son rubios. • 1 / 7 son morenos. • 3 / 5 + 1 / 7 = 21 / 35 + 5 / 35 = 26 / 35 entre rubios y morenos. • 1 – 26 / 35 = 35 / 35 – 26 / 35 = 9 / 35 son los alumnos pelirrojos.
RESOLUCIÓN DE PROBLEMAS • ENUNCIADO_2 • En una clase el 25% de los alumnos son rubios, la séptima parte son morenos, y finalmente hay 17 alumnos pelirrojos. • ¿Cuántos alumnos hay en clase? • ¿Cuántos de ellos son rubios? • ¿Cuántos de ellos son morenos?
RESOLUCION: • 1 / 4 = 7 / 28 son rubios. • 1 / 7 = 4 / 28 son morenos. • 7 / 28 + 4 / 28 = 11 / 28 entre rubios y morenos. • 1 – 11 / 28 = 28 / 28 – 11 / 28 = 17 / 28 son los restantes 17 alumnos pelirrojos. • La unidad fraccionaria 1 / 28 es 1 pelirrojos. • Luego el total son 28 alumnos
Responder y comprobar: • ¿Cuántos alumnos hay en clase? • 28 alumnos • ¿Cuántos de ellos son rubios? • 1 / 4 . 28 = 28 / 4 = 7 son rubios. • ¿Cuántos de ellos son morenos? • 1 / 7 . 28 = 28 / 7 = 4 son morenos. • Además hay 17 alumnos pelirrojos. • Comprobación: • 7 + 4 + 17 = 28 alumnos.
RESOLUCIÓN DE PROBLEMAS • ENUNCIADO_3 • En una escuela el 20% de los alumnos son rubios, la séptima parte del resto son morenos, y finalmente hay 48 alumnos pelirrojos. • ¿Cuántos alumnos hay en la escuela? • ¿Cuántos de ellos son rubios? • ¿Cuántos de ellos son morenos?
RESOLUCIÓN • 1 / 5 son rubios. • Restantes alumnos: 1 – 1 / 5 = (5 / 5) – (1 / 5 ) = 4 / 5. • 1 / 7 de 4 / 5 = 1/ 7 . 4 / 5 = 4 / 35 son morenos. • 1 / 5 + 4 / 35 = (7 + 4) / 35 = 11 / 35 son rubios o morenos. • 1 – 11 / 35 = (35 – 11) / 35 = 24 / 35 son los 48 alumnos pelirrojos. • La unidad fraccionaria 1 / 35 son 2 alumnos pelirrojos. • Luego el total son 35.2 = 70 alumnos
Responder y comprobar: • ¿Cuántos alumnos hay en clase? • 70 alumnos • ¿Cuántos de ellos son rubios? • 1 / 5 . 70 = 70 / 5 = 14 son rubios. • ¿Cuántos de ellos son morenos? • 1 / 7 . ( 70 – 14) = 1 / 7 . 56 = 56 / 7 = 8 son morenos. • Además hay 48 alumnos pelirrojos. • Comprobación: • 14 + 8 + 48 = 70 alumnos.
RESOLUCIÓN DE PROBLEMAS • ENUNCIADO_4 • En una tienda venden refrescos de 1,5 litros a 3 € y bocadillos de ¼ de barra a 20 céntimos de €. En otra tienda los refrescos, de 1/3 de litro, valen 75 céntimos de €, y los bocadillos, de 2/3 de barra, cuestan 40 céntimos de € • Queremos comprar 20 litros de refrescos y 15 barras de bocadillos en la misma tienda. • ¿Cuál es la tienda más barata?.
RESOLUCION: • Tienda A • Refrescos 1,5 litros a 3 € 1 litro a 2 € • Bocadillos 1/4 barra a 0,20 € 1 barra a 0,80 € • Tienda B • Refrescos 1/3 litros a 0,75 € 1 litro a 2,25 € • Bocadillos 2/3 barra a 0,40 € 1 barra a 0,60 € • Gastaríamos: • Tienda A: 20 x 2 + 15 x 0,80 = 40+12 = 52 € • Tienda B: 20 x 2,25 + 15 x 0,60 = 45+9 = 54 € • Luego nos conviene comprar en la tienda A.
RESOLUCIÓN DE PROBLEMAS • ENUNCIADO_5 • En una tienda ofrecen tres botellas de refrescos de 1,5 litros al precio de dos, valiendo cada botella 2 €. • En otra tienda regalan dos botellines de 33 centilitros por cada paquete de seis botellines que se compren, costando 2 € el paquete. • En otra tienda venden garrafas de refresco de 8 litros por 7,6 €. • ¿Cuál es la oferta más ventajosa, sabiendo que el refresco es el mismo?.
RESOLUCION: • Tienda A • Refrescos 1,5x3 litros a 2x2,25 € • Refrescos 4,5 litros a 4,5 € 1 litros a 1 € • Tienda B • Refrescos 0,33x7 litros a 2,18 € • Refrescos 2,31 litros a 2,18 € 1 litro a 0,90 € • Tienda C • Refrescos 8 litros a 7,60 € 1 litro a 0,95 € • Luego nos conviene comprar botellines en la tienda B.
OPERACIONES CON RACIONALES • OPERACIONES CON ENTEROS, FRACCIONES Y DECIMALES • Los números enteros (Z) más los números fraccionarios dan lugar a los números racionales (Q). • Los números decimales exactos o periódicos son números racionales expresados en forma decimal en lugar de fracción. • Reglas para operar convenientemente: • Primero • Se pasan los números decimales a fracción. • Segundo • Se pasan los números enteros a fracciones que tenga de denominador la unidad. • Tercero • Se realizan las operaciones con las fracciones resultantes, cuidando la jerarquía, y sin olvidar simplificar la fracción solución resultante.
Ejemplo 1 • 5 5 3 5 18 5+18 23 • --- + 3 = --- + ---- = ---- + ------ = --------- = ----- • 6 6 1 6 6 6 6 • Ejemplo 2 • 3 – 2 3 – 8 3 – 8 + 3 – 5 5 • – 2 + --- = ---- + ----- = ------ + ---- = ----------- = ------ = – ----- = – 1,25 • 4 1 4 4 4 4 4 4 • Ejemplo 3 • 9 1 9 3 5 9 15 1 – 9 + 15 7 • 1 – --- + 3 = --- – ---- + ---- = --- – ---- + ------ = ----------------- = ---- = 1,40 • 5 1 5 1 5 5 5 5 5 • Ejemplo 4 • 7 3 7 3 3 14 36 9 14 + 36 – 9 41 • --- + 3 – --- = ----- + ---- – --- = ----- + ----- – ----- = ----------------- = ---- • 6 4 6 1 4 12 12 12 12 12
Ejemplo 5 • 1 1 35 5 105 5+105 110 11 • --- + 3,5 = --- + ---- = ------ + ------ = ----------- = ------- = ----- • 6 6 10 30 30 30 30 3 • Ejemplo 6 • _ 7 23 – 2 7 21 7 – 21 + 21 0 • – 2,3 + --- = – --------- + ----- = – ------ + ---- = ------------- = ------ = 0 • 3 9 3 9 3 9 9 • Ejemplo 7 • 9 _ 9 321 – 32 162 289 – 162 + 289 127 • – --- + 3,21 = – ---- + ------------- = – ------- + ------ = ----------------- = ------ • 5 5 90 90 90 90 90 • Ejemplo 8 • 1 __ 3 1 15 – 0 3 132 60 297 – 105 – 35 • --- + 0,15 – --- = ----- + ---------- – --- = ----- + ----- – ------ = --------- = ------ • 3 4 3 99 4 396 396 396 396 132
Ejemplo 9 • __ 3011 – 11 315 3000 315 – 300 315 • – 3,011 + 3,15 = – -------------- + ------ = – ------ + ------ = --------- + ------- = • 990 100 990 100 99 100 • – 30000 31185 1185 237 79 • = ------------ + --------- = --------- = -------- = ------- • 9900 9900 9900 1980 660 • Ejemplo 10 • 1 __ 1 321 – 3 22 – 198 3180 2178 • – --- + 3,21 – 2,2 = – ----- + ---------- – ---- = -------- + -------- – -------- = • 5 5 99 10 990 990 990 • – 198 + 3180 – 2178 3180 – 2376 804 402 134 • = ----------------------------- = ------------------ = -------- = -------- = ------ • 990 990 990 495 165
Ejemplo 11 • 5 _ 8 4 _ • --- + 1,3. [ 1,5 – 7. ( ---- – 2 ) ] : ---- . (1,6 + 2) • 6 3 7 • Vemos que hay un paréntesis anidado. • 5 _ 8 – 6 4 _ • --- + 1,3 . [ 1,5 – 7. ( --------) ] : ---- .(1,6 + 2) • 6 3 7 • 5 _ 3 2 4 _ • --- + 1,3 . [ ---- – 7. ---- ] : ---- .(1,6 + 2) • 6 2 3 7 • 5 _ 3 14 4 _ • --- + 1,3 . [ ---- – ---- ] : ---- .(1,6 + 2) • 6 2 3 7 • Queda aún un paréntesis que hay que resolver prioritariamente.
5 _ 3 14 4 5 • --- + 1,3 . [ ---- – ---- ] : ---- .( ---- + 2) • 6 2 3 7 3 • 5 _ 9 28 4 5 + 6 • --- + 1,3 . [ ---- – ---- ] : ---- .(---------) • 6 6 6 7 3 • Pasamos los números decimales periódicos a fracciones: • 5 4 - 19 4 21 • --- + --- . [ ---- ] : ---- .---- • 6 3 6 7 3 • Ahora los productos y divisiones, de izquierda a derecha: • 5 - 76 4 21 • --- + ----- : ---- .---- • 6 18 7 3 • 5 - 228 21 • --- + --------- . ---- • 6 72 3
5 - 228 21 • --- + --------- . ---- • 6 72 3 • 5 - 4788 • --- + ----------- • 6 216 • Ahora ya sólo quedan sumas: • 180 - 4788 – 4608 – 2304 – 1152 – 576 – 192 – 64 • ------- + --------- = ----------- = --------- = ---------- = --------- = -------- = ------ • 216 216 216 108 54 27 9 3 • Tras dividir sucesivamente por los factores comunes de numerador y denominador, queda finalmente la fracción resultante: