530 likes | 859 Views
Analisis Rangkaian Listrik Di Kawasan Waktu Hukum , Kaidah , Teorema Rangkaian. Hukum-Hukum Dasar. Hukum Ohm. Pekerjaan analisis rangkaian listrik berbasis pada dua Hukum Dasar yaitu 1. Hukum Ohm 2. Hukum Kirchhoff. Relasi Hukum Ohm. resistansi. Resistansi konduktor
E N D
AnalisisRangkaianListrik Di KawasanWaktu Hukum, Kaidah, TeoremaRangkaian
Hukum Ohm Pekerjaananalisisrangkaianlistrikberbasispada duaHukumDasaryaitu 1. Hukum Ohm 2. Hukum Kirchhoff • Relasi Hukum Ohm resistansi • Resistansikonduktor • Suatukonduktor yangmemilikiluas penampangnmerata, A, mempunyairesistansi R
Vsaluran R Saluran kirim i Sumber 220 V Beban i i = 20 A R Saluran balik + CONTOH: Seutaskawatterbuatdaritembagadenganresistivitas 0,018 .mm2/m. Jikakawatinimempunyaipenampang 10 mm2 danpanjang 300 m, hitunglahresistansinya. Jikakawatinidipakaiuntukmenyalurkandaya (searah), hitunglahteganganjatuhpadasaluranini (yaitubedateganganantaraujungkirimdanujungterimasaluran) jikaarus yang mengaliradalah 20 A. Jikategangan di ujungkirimadalah 220 V, berapakahtegangan di ujungterima? Berapakahdaya yang diserapsaluran ? Diagram rangkaianadalah:
Sebelumkitalanjutkanmeninjauhukum Kirchhoff, adabeberapaistilah yang perlukitafahami Terminal : ujung akhir sambungan piranti atau rangkaian. Rangkaian : beberapa piranti yang dihubungkan pada terminalnya. Simpul (Node) : titik sambung antara dua atau lebih piranti. Catatan : Walaupun sebuah simpul diberi pengertian sebagai sebuah titik tetapi kawat-kawat yang terhubung langsung ke titik simpul itu merupakan bagian dari simpul; jadi dalam hal ini kita mengabaikan resistansi kawat. Simpai (Loop): rangkaian tertutup yang terbentuk apabila kita berjalan mulai dari salah satu simpul mengikuti sederetan piranti dengan melewati tiap simpul tidak lebih dari satu kali dan berakhir pada simpul tempat kita mulai perjalanan.
Ada duahukum Kirchhoff, yaitu 1. HukumTegangan Kirchhoff 2. HukumArus Kirchhoff Formulasidarikeduahukumtersebutadalahsebagaiberikut: • Hukum Arus Kirchhoff (HAK) -Kirchhoff's Current Law (KCL) • Setiap saat, jumlah aljabar arus di satu simpul adalah nol • Hukum Tegangan Kirchhoff (HTK) Kirchhoff's Voltage Law (KVL) • Setiap saat, jumlah aljabar tegangan dalam satu loop adalah nol
+ v2 + v4 i2 i4 B A 4 2 i1 i5 + v1 + v5 1 5 i3 3 C loop 1 loop 2 Relasi-relasikeduahukum Kirchhoff dijelaskanmelalui diagram rangkaianberikut loop 3
+ v1 + v1 + vL + v2 R1 R1 vs a). vs R2 L b). + v1 + + + + c). + vC R1 vs C + vL + v1 d). + vC L R1 vs C Contoh : HTK
a). i1 R1 R2 i2 i1 R1 R2 i2 A A b). + v1 + v2 + v1 + v2 + vL R3 + v3 iL i3 L c). i1 R1 iC C A + vC + v1 R3 + v3 i3 d). i1 R1 C iC A + vC + v1 + vL iL L Contoh : HAK
simpul super AB + v2 + v4 i2 i4 B A 4 2 i1 i5 + v1 + v5 1 5 i3 3 loop 3 C Pengembangan HTK dan HAK Hukum Kirchhoff dapatdikembangan, tidakhanyaberlakuuntuksimpulataupun loop sederhanasaja, akantetapiberlaku pula untuksimpul super maupunloop super simpul super merupakangabungandaribeberapasimpul loop super merupakangabungandaribeberapa loop loop 3 = mesh super simpul super AB
i4 i5 A 3 v 4 B C i3= 8A i2= 2A i1= 5A + CONTOH: v = ? simpul super ABC Simpul C loop ACBA
+ v1 i1 i2 1 1 2 + v1 + v2 2 i1 + v2 i2 Hubungan paralel v1 = v2 Hubungan seri i1 = i2 Hubungan Seri dan Paralel Dua elemen atau lebihdikatakan terhubung paralel jika mereka terhubung pada dua simpul yang sama Dua elemen dikatakan terhubung seri jika mereka hanya mempunyai satu simpul bersama dan tidak ada elemen lain yang terhubung pada simpul itu
i i R1 R2 + Vtotal Rekiv Rangkaian Ekivalen Resistor Seri Dua rangkaian disebut ekivalen jika antara dua terminal tertentu, mereka mempunyai karakteristik i-v yang identik
G1 i1 itotal itotal G2 i2 Gekiv Rangkaian Ekivalen Resistor Paalel Dua rangkaian disebut ekivalen jika antara dua terminal tertentu, mereka mempunyai karakteristik i-v yang identik
i A i1 i2 iN + v _ C1 C2 CN i B A + v _ C1 C2 CN B Kapasitansi EkivalenKapasitorParalel Kapasitansi EkivalenKapasitor Seri
A + v1 + v2 + vN + v _ LN B A + v _ L2 L1 LN B Induktansi EkivalenInduktor Seri L1 L2 Induktansi EkivalenInduktorParalel
i = ? C1=100F i C2=50F v = 30sin(100t)V + CONTOH: Jika kapasitor dihubungkan paralel :
i i R1 bagian lain rangkaian iR bagian lain rangkaian + v + v + vR is vs R2 Sumber arus Sumber tegangan + Dari sumber tegangan menjadi sumber arus Dari sumber arus menjadi sumber tegangan Sumber Ekivalen
R2=10 3A 30V R1=10 is i3 + + i2 R1 20 i1 R1 20 R2 30 R2 30 50 V 2,5 A CONTOH:
C C R3 RB RA R2 R1 A B A B RC Transformasi Y- Dalam beberapa rangkaian mungkin terjadi hubungan yang tidak dapat disebut sebagai hubungan seri, juga tidak paralel. HubunganY Hubungan Hubungan semacam ini mengandung bagian rangkaian dengan tiga terminal yang mungkin terhubung (segi tiga) atau terhubung Y (bintang) Menggantikan hubungan dengan hubungan Y yang ekivalen, atau sebaliknya, dapat mengubah rangkaian menjadi hubungan seri atau paralel.
is 10 20 + + v1 + v2 + v3 60 V 30 KaidahPembagi Tegangan Contoh:
i2 i3 i1 is R1 10 R2 20 R3 20 1 A KaidahPembagi Arus Contoh :
+ R1 + vo R2 vs _ Proporsionalitas Keluarandarisuatu rangkaian linieradalahproporsionalterhadapmasukannya x y =K x K masukan keluaran Penjelasan: masukan keluaran
A + vo1 60 vin 120 B A + vo2 80 + vAB 40 + + B A 80 + vo3 60 vin 40 120 B CONTOH:
Prinsip Superposisi Keluaran dari suatu rangkaian linier yang dicatu oleh lebih dari satu sumber adalah jumlah keluaran dari masing-masing sumber jika masing-masing sumber bekerja sendiri-sendiri Suatu sumber bekerja sendiri apabila sumber-sumber yang lain dimatikan. • Cara mematikan sumber: • Mematikan sumber tegangan berarti membuat tegangan • sumber itu menjadi nol, artinya sumber ini menjadi hubungan singkat. • b. Mematikan sumber arus adalah membuat arus sumber menjadi nol, artinya sumber ini menjadi hubungan terbuka.
10 + vo _ 10 v1=12V v2=24V 10 10 + vo1 _ + vo2 _ 12V 10 10 + 24V + + + CONTOH: matikan v1 matikan v2 Keluaranvojikakeduasumberbekerjabersamaadalah:
i2=2A i1=1A R2=10 R1=10 Teorema Millman Apabila beberapa sumber arus ik yang masing-masing memiliki resistansi paralel Rk dihubungkan seri,maka hubungan seri tersebut dapat digantikan dengan satu sumber arus ekivalen iekiv dengan resistansi paralel ekivalen Rekiv sedemikian sehingga Contoh: iekiv=1,5A Rekiv=20
TeoremaThévenin Jika rangkaian seksi sumber pada hubungan dua-terminal adalah linier, maka sinyal pada terminal interkoneksi tidak akan berubah jika rangkaian seksi sumber itu diganti dengan rangkaian ekivalen Thévenin i B S v Teorema Norton Jika rangkaian seksi sumber pada hubungan dua-terminal adalah linier, maka sinyal pada terminal interkoneksi tidak akan berubah jika rangkaian seksi sumber itu diganti dengan rangkaian ekivalen Norton Suaturangkaianbisadipandangterdiridariduaseksi Seksi sumber Seksi beban
Rangkaian ekivalen Thévenin Seksisumberdarisuaturangkaiandapatdigantikanoleh Rangkaian ekivalen Thévenin yaiturangkaian yang terdiri dari satu sumber tegangan VT yang terhubung seri dengan resistor RT RT seksi sumber + + vht VT _
i = 0 seksi sumber + vht i = 0 RT + VT RT + VT _ Cara MenentukanVTdanRT UntukmencariVT : lepaskanbebansehinggaseksisumbermenjadi terbuka. Tagangan terminal terbukavhtinilahVT + vht = VT UntukmencariRT : hubungsingkatlah terminal bebansehinggaseksisumbermenjaditerhubungsingkatdanmengalirarushubungsingkatihs. RTadalahVT dibagi his. i = ihs seksi sumber ihs= VT /RT JadidalamRangkaianekivalenThevenin : VT = vhtdan RT = vht / ihs
+ Cara lain mencariRT Cara lain yang lebihmudahuntukmenentukanRT adalahdenganmelihatresistansidari terminal bebankearahseksisumerdengansemuasumberdimatikan. Penjelasan: R1 R1 Denganmematikansumbermaka R2 vs R2 RT
RN IN Rangkaian ekivalen Norton Seksisumbersuaturangkaiandapatdigantikandengan Rangkaian ekivalen Norton yaiturangkaian yang terdiri dari satu sumber arus IN yang terhubung paralel dengan resistor RN seksi sumber Rangkaian ekivalen Norton dapatdiperolehdarirangkaianekivalenThevenindandemikianjugasebaliknya. Hal inisesuaidengankaidahekivalensisumber.
RT + _ VT RN IN Rangkaian ekivalen Thévenin VT = vht RT = vht / ihs RT = R yang dilihat dari terminal ke arah seksi sumber dengan semua sumber mati Rangkaian ekivalen Norton RT = RN IN = Ihs RN= vht / ihs
A' A A 10 20 24 V 20 B B + + CONTOH: Rangkaian Ekivalen Thévenin RT = 20 = 12 V VT
Alih Daya Maksimum Ada empat macam keadaan hubungan antara seksi sumber dan seksi beban • Sumber tetap, beban bervariasi • Sumber bervariasi, beban tetap • Sumber bervariasi, beban bervariasi • Sumber tetap, beban tetap Dalammembahasalihdayamaksimum, yaitudayamaksimum yang dapatdialihkan (ditransfer) kebeban, kitahanyameninjaukeadaan yang pertama
+ i i A A + v RN RT IN VT RB RB B B sumber beban sumber beban _ Kita menghitungalihdayamaksimummelaluirangkaianekivalenThéveninatau Norton Rangkaian sumber tegangan dengan resistansi Thévenin RT akan memberikan daya maksimum kepada resistansi beban RB bila RB = RT Rangkaian sumber arus dengan resistansi NortonRN akan memberikan daya maksimum kepada resistansi beban RB bila RB = RN
A A 10 20 RX= ? 24 V 20 B + CONTOH: Hitung RX agar terjadi alih daya maksimum Lepaskan RX hitung RT ,VT HubungkankembaliRx Alih daya ke beban akan maksimum jika RX = RT = 20 danbesardayamaksimum yang bisadialihkanadalah
Teorema Tellegen Dalam suatu rangkaian, jika vkmengikuti hukum tegangan Kirchhoff (HTK) dan ikmengikuti hukum arus Kirchhoff (HAK), maka Teorema ini menyatakan bahwa di setiap rangkaian listrik harus ada perimbangan yang tepat antara daya yang diserap oleh elemen pasif dengan daya yang diberikan oleh elemen aktif. Hal ini sesuai dengan prinsip konservasi energi.
+ R1= 2 i is 10 V R2= 3 _ CONTOH: (memberi daya) (menyerapdaya)
+ vk + vk Rsub Rk + vsub ik ik Teorema Substitusi Suatu cabang rangkaian antara dua simpul dapat disubstitusi oleh cabang baru tanpa mengganggu arus dan tegangan di cabang-cabang yang lain asalkan tegangan dan arus antara kedua simpul tersebut tidak berubah
Course Ware AnalisisRangkaianListrik Di KawasanWaktu Hukum, Kaidah, TeoremaRangkaian SudaryatnoSudirham