1 / 25

HŐTANI JELENSÉGEK

HŐTANI JELENSÉGEK. A hő terjedése létrejöhet hővezetéssel, hősugárzással és hőáramlással. Hővezetés esetén a hő a testben részecskéről részecskére halad Hőáramláskor a részecskék elmozdulnak helyükről Hősugárzáskor a hő áthatol a közegen, míg el nem nyelődik.

Download Presentation

HŐTANI JELENSÉGEK

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HŐTANI JELENSÉGEK A hő terjedése létrejöhet hővezetéssel, hősugárzássalés hőáramlással

  2. Hővezetés esetén a hő a testben részecskéről részecskére halad • Hőáramláskor a részecskék elmozdulnak helyükről • Hősugárzáskor a hő áthatol a közegen, míg el nem nyelődik • A hőtani jelenségeket azon természetüknél fogva tárgyaljuk, hogy mi változik az adott jelenség esetén az anyagban

  3. HŐVEZETÉS(Fourier) Hővezetésről akkor beszélünk, ha a hőenergia úgy terjed, hogy közben az anyag nem mozog

  4. Tény: Forró italba (például kávéba, teába) kiskanalat téve, a kanál vége egy kis időn belül forróvá válik Magyarázat: Ennek a jelenségnek a magyarázata a hővezetésben rejlik. A kanál folyadékban lévő vége melegszik a forró folyadéktól és ez a melegedés adódik át atomról atomra, végül elérkezve a kanál másik végéhez, ami így meleggé válik. Ebben a folyamatban a hőenergia úgy terjed a kanálban, hogy a kanál maga nem mozdul el!

  5. Hővezetés A szilárd testekben és nyugvó közegekben (folyékony vagy gáz) lezajló hőterjedési jelenség. Stacionárius körülmények között az egységnyi keresztmetszeten vezetéssel átvitt hő egyenesen arányos a hőmérsékletkülönbséggel és fordítottan arányos a távolsággal.  (W/m·K) a hővezetési tényező, anyagjellemző

  6. Az anyagokat hővezetés szempontjából két nagy csoportba soroljuk. Vannak jó hővezető anyagok, mint például a fémek, és vannak rossz hővezető agyagok, mint például a fa és a műanyagok. Néhány anyag hővezetési tényezője (W/mK)ezüst ................... 420réz ....................... 400alumínium ........... 220sárgaréz ............. 93 - 117víz ........................ 96acél ..................... 47 - 58ólom .................... 35üveg .................... 0,6 - 1téglafal ................ 0,3 - 0,6fa ......................... 0,2 - 0,5gyapjúszövet ...... 0,05levegő ................. 0,02

  7. Miért nem hal ki a tavak élővilága télen sem? A jég is rossz hővezető, ezért a mélyebb tavak nem fagynak be fenékig, élővilága nem hal ki télen sem. • Milyen hőterjedési módot nevezünk hővezetésnek? • Hővezetésről akkor beszélünk, ha a hőenergia úgy terjed, hogy közben az anyag nem mozog • Írja fel és értelmezze a hővezetés FOURIER-féle alapegyenletét! • Stacionárius körülmények között az egységnyi keresztmetszeten vezetéssel átvitt hő egyenesen arányos a hőmérsékletkülönbséggel és fordítottan arányos a távolsággal. • (W/m·K) a hővezetési tényező, anyagjellemző

  8. HŐÁRAMLÁS a hő terjedésének azon módja, amikor az anyag különböző hőmérsékletű részecskéi helyüket megváltoztatják a hőáramlás addig tart, amíg a folyadékban vagy a gázban hőmérséklet-különbség, ezért sűrűségkülönbség van

  9. Folyadékokban történő hőáramlás megértéséhez gondoljunk a vízfűtésrendszerre. Gázokban történő hőáramlás megértéséhez képzeljünk el „papírkígyót”, melyet egy kötőtűre támasztunk. Ha a kígyót a fűtőtest fölé helyezzük, akkor a feláramló meleg levegő hatására forgásban jön. Ezért fázik a lábunk hagyományos fűtésnél.

  10. Lávalámpa működési elve: A lávalámpában a viasz és a hordozó folyadék eltérő expanzióját használja ki a különböző hőmérsékleteken. Folyékony szén-tetrakloridban (CCL4-erősen mérgező) viaszt helyeznek el. Melegítés hatására ezen elegynek enyhén kisebb lesz a sűrűsége a vízénél, azonban alacsonyabb hőmérsékleten nagyobb, szobahőmérsékleten pedig szilárd halmazállapotú. Mivel a viasz a vízben oldhatatlan, ezért egyben marad. Az üveghengerrel alulról folyamatosan hőt közölnek, így hőáramlás útján a benne lévő megolvadt viaszból buborékok szakadnak le, és az üveghenger felső része felé kezdenek áramolni. Az üvegkúp csúcsához érkezve a hőközlő forrástól távolabb kerülnek, így sűrűségük az enyhe hőmérséklet-különbség hatására ismét nagyobb lesz, mint a hordozó közegé, aminek következtében a buborékok ismét leszállnak az üvegkúp aljára, ahol a hőközlés hatására a folyamat megismétlődik. Környezeti hőmérséklet hatása: nyáron általában több és kisebb viaszbuborék keletkezik, télen pedig kevesebb és nagyobb. A viaszbuborékok keletkezése és áramlása teljesen véletlenszerű, matematikai függvényekkel nem írható le.

  11. Órán elvégzendő kísérlet Kéménymodell bemutatása Helyezzünk háromlábra egy száraz homokkal töltött fémcsészét! Állítsunk fölé egy 5-6 cm széles üvegcsövet, ez alá pedig vízszintesen két kisebb átmérőjűt! Melegítsük meg kissé a homokot, majd tegyünk a vízszintes csövekbe egy-egy égő cigarettát. A széles csőben feláramló levegőt beszívja a füstöt, és magasan kilöki.

  12. Két kis kísérlet Szellőztetés elve Kis léggömb elv Egy papírszalvétát csavarjunk hengerré, és állítsuk az asztalra! Gyújtsuk meg a papír felső szélét! A hőáram hatására a lángoló szalvéta felszáll. • Folyosóra nyíló tanterem résnyire nyitott ajtajában helyezzünk egy égő gyertyát a padlóra, egy másikat pedig tartsunk magasra a mennyezet közelébe! Az alsó láng befelé, a felső kifelé hajlik, jelezve, hogy a levegőt felül kifelé, alul pedig befelé áramlik.

  13. Hőáramlás A hőmérséklet-különbség sűrűségkülönbséggel jár: a melegebb, nagyobb sűrűségű részecskék elmozdulnak, hőtartalmukat is magukkal viszik, és helyükbe hidegebb, alacsonyabb sűrűségű részecskék áramlanak (Szellőztetésnél, mi a célszerű? Bukóra nyitni az ablakot? Vagy teljesen kitárni? )

  14. Mi a hőáramlás jelensége? a hő terjedésének azon módja, amikor az anyag különböző hőmérsékletű részecskéi helyüket megváltoztatják. Miért áramlanak felfelé a gázok és a folyadékok melegítés hatására? A folyadékok és a gázok a melegítés helyén kitágulnak, sűrűségük kisebb lesz, ezért felfelé áramlanak. Milyen anyag kerül az eltávozott anyag helyére? Az eltávozott anyag helyére hidegebb, nagyobb sűrűségű anyag kerül. Meddig tart a hőáramlás? A hőáramlás addig tart, amíg a folyadékban vagy a gázban hőmérséklet-különbség, ezért sűrűségkülönbség van.

  15. HŐSUGÁRZÁS a hő terjedésének azon módja, amikor a hő nem részecskéről-részecskére halad, hanem rendkívüli gyorsasággal hatol keresztül a közegeken (levegőn, vízen stb.) közvetítő anyag illetve közeg nélküli hőterjedési jelenség (elektromágneses sugárzás)

  16. Bármely test, amelyik melegebb az abszolút nulla foknál (0 K = -273,15 °C) hőmérsékleti sugárzás bocsát ki magából. A hősugárzás egyszerre többféle különböző hullámhosszúságú elektromágneses sugárzást is tartalmaz, de van egy a hőmérséklettől függő jellemző maximuma, hogy melyikből a legtöbbet. (itt már átsétálnánk a fizika egy másik területére, a Wien eltolódáshoz, melyet majd 12 osztályban tárgyalunk)

  17. Hősugárzásalapfogalmak Közvetítő anyag illetve közeg nélküli hőterjedési jelenség. (elektromágneses sugárzás) • Elektromágneses hullámokat egy test részben: • átengedi (átengedési tényező D1), D= declining • visszaveri (visszaverődési tényező R1), R=reflection • elnyeli (abszorpciós, elnyelési tényező a1). a= absorption a+R+D=1

  18. A NAP Hősugárzás útján jut a Földre a Nap melege is. melegítő hatása azonban csak akkor lesz, ha a sugarakat valamely test elnyelni képes. A forró testek hősugarakat bocsátnak ki magukból. Minden test annál jobban sugároz, minél melegebb. A nagyon magas hőmérsékleten izzó testek világítanak is. (pld csillagok) Néhány adat a napról: • Felszíni hőmérséklete: 6000 0C • Maghőmérséklet: 15 millió 0C Hogy a Nap fénye és hősugarai eljussanak a Földre, ahhoz nem kell semmilyen különleges közeg, mert az elektromágneses hullámok a vákuumban akadálytalanul közlekednek (c = 3*108 m/s sebességgel). Sőt, valójában éppen az a helyzet, hogy a tiszta vákuumban terjed a legkönnyebben (és gyorsabban), de ha pl. csillagközi gáz és por van jelen, akkor lelassulhat, vagy el is akadhat.

  19. A NAP BELSEJE • a mag • a sugarzasizona;egy foton szabad úthosszakb. 0,5 cm • áramlásizóna

  20. ABSZOLÚT FEKETE TEST • Olyan feltételezett test, amely teljes egészében elnyeli a ráeső hő- és fénysugarakat (semmit sem ver vissza és nem is ereszt át sugárzást). Jellemző elméleti tulajdonsága még, hogy adott hőmérsékleteken több hő- és fényenergiát sugároz ki, mint bármely más test. Az abszolút fekete test tulajdonságait jól megközelíti a belül kormozott falú, zárt, üres doboz falán levő kicsiny nyílás. Az abszolút fekete test sugárzásának, az ún. fekete sugárzásnak a vizsgálata alapján jutott el Max Planck Nobeldíjas német fizikus 1900-ban a kvantumelmélet alapgondolatához.

  21. Hősugárzás kérdések Mi a hősugárzás jelensége? Az energia úgy is eljuthat egyik testről a másikra, hogy a közbeeső levegőréteg vagy más közeg nem melegszik fel. Ez a hősugárzás. Mitől függ a testek sugárzásának mértéke? A forró testek hősugarakat bocsátnak ki magukból. Minden test annál jobban sugároz, minél melegebb. Mire képesek még a rendkívül magas hőmérsékleten izzó testek (a melegítés mellett)? A nagyon magas hőmérsékleten izzó testek világítanak is. Melyik felület nyeli el nagyobb mértékben a hősugarakat? A sötét, érdes felület nagyobb mértékben nyeli el a hősugarakat, mint a fényes, sima.

  22. Most pedig jöjjenek az érdekes mindennapi jelenségekkel kapcsolatos kérdések Szerepelhetnek a dolgozatban!!!

  23. Miért forog a fűtött kályha tetejére állított papírkígyó? A kályha felmelegíti a felette lévő levegőt. A meleg levegő felszáll, helyébe hideg levegő tódul, amit a kályha ismét felmelegít, mely ismét felszáll, stb. Milyen hőterjedési módot nevezünk hővezetésnek? Hővezetésről akkor beszélünk, ha a hőenergia úgy terjed, hogy közben az anyag nem mozog Miért áll bordákból a fűtőtest? Mert több meleget ad, mintha ugyanekkora sima tartály lenne, nagyobb a hőleadási felület Miért fázunk jobban, ha fúj a szél? Az emberi test hőmérséklete 36-37 0C. Mivel itt a szervezetünkben állandó belső égés van, a testünk körül mindig egy a testünk által felmelegített levegőréteg van. Ez a hőköpeny. A szél elsöpri, vagy megbontja ezt a hőköpenyt, és ezért már a néhány fokkal hűvösebb levegőt is nagyon hidegnek érezzük. Miért emelkedik felfelé szárnycsapás nélkül a gólya? A Föld felületét felmelegíti a Nap sugárzása (hősugárzás útján, tehát a levegőt ez nem melegíti fel!) A Föld pedig a vele érintkező levegőréteget melegíti fel , majd a felmelegített levegő, szűk kéményszerű oszlopokban száll felfelé (hőáramlás jelensége). Ezekre a hőrétegekre fekszenek rá a gólyák.

  24. ÉRDEKES LINKEK • http://phet.colorado.edu/en/simulations/category/physics • (EZ UGYAN ANGOL NYELVŰ, de hát Önök jól tudnak angolul!) • www.sdt.sulinet.hu • http://www.szertar.com/ • http://realika.educatio.hu/ • http://metal.elte.hu/~phexp (kísérletek) Dr. Juhász András • HA VALAKI VALAMILYEN ÉRDEKESET TALÁL A NETEN SZÓLJON NEKEM, HOGY BŐVÍTHESSÜK A LISTÁT!!!

  25. FELHASZNÁLT IRODALOM • Fizika 10-Maxim Kiadó • www.sdt.sulinet.hu • Ötösöm lesz fizikából-Gulyás János...-Műszaki Kiadó • Fizika Középiskolásoknak - Dr. Siposs András-Korona Kiadó • Fizika Hőtan - Dr. Zátonyi – Ifj. Zátonyi • Fizika Szakközépiskolai Összefoglaló Feladatgyűjtemény • http://metal.elte.hu/~phexp (kísérletek) Dr. Juhász András • http://www.sg.hu • www.magfuzio.hu • Wikipedia, stb más internetes anyagok • www.tar.hu/fizfoto • www.tar.hu/fizrajz • www.extra.hu/keretfizika • www.ntk.hu • www.nettankonyv.hu

More Related