1 / 73

Bab 20

Bab 20. Karakteristik Butir Model Logistik. ------------------------------------------------------------------------------ Karakteristik Butir Model Logistik ------------------------------------------------------------------------------. Bab 20 KARAKTERISTIK BUTIR MODEL LOGISTIK

Download Presentation

Bab 20

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bab 20 Karakteristik Butir Model Logistik

  2. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Bab 20 KARAKTERISTIK BUTIR MODEL LOGISTIK A. Distribusi Probabilitas Logistik 1. Pendahuluan • Frederic M. Lord memperkenalkan model ojaif normal • Model ojaif normal cukup sulit untuk perhitungan • Allan Birnbaum memperkenalkan model logistik yang mirip dengan model ojaif normal dan lebih mudah untuk perhitungan

  3. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 2. Model Ojaif Normal dan Model Logistik • Karakteristik butir model logistik didasarkan kepada kumulasi distribusi probabilitas logistik • Karena model logistik ini menyerupai model ojaif normal maka model ojaif normal dapat diganti dengan model logistik • Kedekatan ini dapat dipertinggi melalui penggunaan konstanta tertentu • Pada saat ini, dalam banyak penggunaan, model yang sering digunakan adalah model logistik • Dalam hal karakteritik butir, yang banyak digunakan adalah karakteritik butir model logistik • Ada tiga model logistik yakni model 1 parameter, model 2 parameter, dan model 3 parameter

  4. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 3. Fungsi Logistik • Fungsi densitas logistik umum • Untuk k = 1 dan u = 0, bentuk ini menjadi

  5. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ f (X) • Grafik fungsi logistik • Fungsi distribusi (ojaif) umum 0,2 0,1 X 3 2 1 1 2 3 0

  6. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Fungsi distribusi (ojaif) untuk k = 1 dan X = 0 Bentuk grafik adalah Bentuk umum digunakan pada karakteristik butir model logistik dengan beberapa penyesuaian f (X) 1,0 0,8 0,5 0,2 X 3 2 1 1 2 3 0

  7. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 4. Model Rasch dan Model Logistik • Ada dua model karakteritik butir yang pada dasarnya menggunakan fungsi logistik Model Rasch Model Logistik • Model Rasch hanya menggunakan satu parameter yakni parameter b • Model logistik terdiri atas tiga macam yakni model satu parameter, model dua parameter, dan model tiga parameter • Model Rasch sangat mirip dengan model logistik satu parameter • Karena itu ada kalanya model logistik satu parameter dinamakan model Rasch

  8. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ B. Karakteristik Butir Model Rasch 1. Pendahuluan • Responden ke-g menjawab butir ke-i dan misalkan Kemampuan responden Bg Taraf sukar butir Di Probabilitas sukses Pi(Bg) Probabilias gagal 1 – Pi(Bg) • Probabilitas sukses berbanding dengan kemampuan yakni makin tinggi kemampuan makin tinggi probabilitas sukses • Probabilitas gagal berbanding dengan taraf sukar butir yakni makin sukar butir makin tinggi probabilitas gagal

  9. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 2. Kesempatan (Odds) Sukses Kesempatan sukses, dalam hal ini, adalah sehingga probabilitas sukses menjadi Selanjutnya untuk menentukan karakteristik butir, dianggap bahwa kemampuan dan taraf sukar butir berbentuk eksponensial

  10. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 3. Karakteritik Butir Model Rasch • Kemampuan dan taraf sukar butir berentuk eksponensial • Probabilitas sukses (jawaban betul) menjadi

  11. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Dengan demikian, karakteristik butir model Rasch untuk Responden ke-g dengan kemampuan  Butir ke-i dengan taraf sukar bi berbentuk Bentuk ini adalah bentuk fungsi distribusi probabilitas logistik Akan kita lihat bahwa bentuk ini mirip dengan model logistik satu parameter

  12. ------------------------------------------------------------------------------Karakteritik Butir Model Logistik------------------------------------------------------------------------------ C. Karakteristik Butir Model Logistik 1. Model Logistik yang Digunakan Dari model umum disusun karakteristik butir model logistik melalui penyesuaian  = X bi = u Pi() = (X) D = 1 / k untuk 1 parameter Dai = 1 / k untuk 2 dan 3 parameter

  13. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 2. Model Logistik Satu Parameter • Di sini model ini disingkat menjadi model L1P • Probabilitas sukses (jawaban betul) untuk butir ke-i • Mereka adalah sama sehingga dapat digunakan salah satu di antara mereka • Agar dapat dekat ke model ojaif normal sampai 0,01, maka diambil D = 1,7

  14. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Probabilitas gagal (jawaban salah) untuk butir ke-i Qi() = 1 – Pi() atau dalam bentuk probabilitas Agar dekat ke model ojaif normal sampai 0,01 maka digunakan D = 1,7

  15. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Model L1P dan model Rasch Terdapat kemiripan di antara model L1P dengan model Rasch Perbedaan mereka terletak pada nilai D Pada L1P nilai D = 1,7 sedangkan pada model Rasch nilai D = 1 Model Rasch Model L1P

  16. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 3. Model Logistik Dua Parameter • Di sini model ini disingkat menjadi model L2P • Probabilitas sukses (jawaban betul) untuk butir ke-i • Mereka adalah sama sehingga dapat digunakan salah satu di antara mereka • Agar dapat dekat ke model ojaif normal sampai 0,01, maka diambil D = 1,7

  17. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Probabilitas gagal (jawaban salah) untuk butir ke-i Qi() = 1 – Pi() atau dalam bentuk probabilitas Agar dekat ke model ojaif normal sampai 0,01 maka digunakan D = 1,7

  18. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 4. Model Logistik Tiga Parameter • Di sini model ini disingkat menjadi model L3P • Probabilitas sukses (jawaban betul) untuk butir ke-i • Agar dapat dekat ke model ojaif normal sampai 0,01, maka diambil D = 1,7

  19. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Probabilitas gagal (jawaban salah) untuk butir ke-i Qi() = 1 – Pi() atau dalam bentuk probabilitas Agar dekat ke model ojaif normal sampai 0,01 maka digunakan D = 1,7

  20. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 5. Nilai Konstanta D • Ada kalanya demi kesederhanaan, nilai D ditetapkan sebesar D = 1 • Untuk mendekatkan model logistik ke model ojaif normal Dalam hal ini nilai D ditetapkan sebesar D = 1,7

  21. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ D. Lengkungan Karakteristik Butir Model Logistik 1. Pendahuluan • Lengkungan karakteristik butir ini dilakukan untuk setiap butir atau butir demi butir • Lengkungan karakteristik butir dihitung dan digrafikkan untuk sejumlah nilai , biasanya, di sekitar  4    + 4 dalam lompatan 0,5 atau menurut keperluan • Ada kalanya, beberapa butir digrafikkan dalam satu grafik sehingga karakeristik mereka dapat dibandingkan satu terhadap lainnya

  22. ------------------------------------------------------------------------------Karakteritik Butir Model Logistik------------------------------------------------------------------------------ 2. Lengkungan Karakteristik Butir L1P Untuk butir ke-i, model L1P hanya memiliki satu parameter butir yakni bi Contoh 1 Lengkungan karakteristik butir L1P pada butir dengan bi = 1,0 dan dihitung pada  dari  3 sampai + 3 dengan lompatan 1,0 Karakteritik butir ini berbentuk dan dalam bentuk tabel diperoleh nilai probabilitas sukses (jawaban betul)

  23. ------------------------------------------------------------------------------Karateriktik Butir Model Logistik------------------------------------------------------------------------------  1,7(-1,0) Pi()  3 6,8 0,001  2 5,1 0,006  1 3,4 0,032 0 1,7 0,154 1 0,0 0,500 2  1,7 0,846 3  3,4 0,968 Pi() 1,0 0,8 0,6 0,4 0,2  3 2 1 0 1 2 3

  24. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 2 Ada 4 butir pada model L1P masing-masing dengan taraf sukar sebagai berikut Butir 1 2 3 4 Taraf sukar  1 0 1 2 Karakteristik butir dengan menggunakan D = 1,7 adalah Perhitungan untuk setiap butir adalah seperti pada contoh 1 Hasil perhitungan dapat disusun dalam bentuk tabel

  25. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Butir bi Pi() untuk  = i  3  2  1 0 1 2 3 1 1 0,03 0,15 0,50 0,85 0,97 0,99 0,99 2 0 0,03 0,15 0,50 0,85 0,97 0,99 3 1 0,03 0,15 0,50 0,85 0,97 4 2 0,03 0,15 0,50 0,85 Pi() 1,0 0,9 0,8 0,7 0,6 0,5 0,4 1 2 3 4 0,3 0,2 0,1  3 2 1 0 1 2 3

  26. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Tampak pada grafik bahwa lengkungan untuk bi yang makin tinggi terletak lebih ke kanan daripada lengkungan untuk bi yang lebih rendah Makin sukar butir makin ke kanan letak lengkungannya sehingga butir 1 termudah dan butir 4 tersukar Makin sukar butir makin diperlukan  yang lebih tinggi untuk dapat menjawabnya dengan betul Contoh 3 Ada 3 butir pada model L1P masing-masing dengan taraf sukar sebagai berikut Butir 1 2 3 Taraf sukar  0,5 0,5 1,5 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0

  27. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 4 Ada 3 butir pada model L1P masing-masing dengan taraf sukar sebagai berikut Butir 1 2 3 Taraf sukar  0,8 0,8 1,8 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0 Contoh 5 Ada 4 butir pada model L1P masing-masing dengan taraf sukar sebagai berikut Butir 1 2 3 4 Taraf sukar  1,2  0,2 0,2 1,2 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0

  28. ------------------------------------------------------------------------------Karakteritik Butir Model Logistik------------------------------------------------------------------------------ 3. Lengkungan Karakteristik Butir L2P Untuk butir ke-i, model L2P memiliki dua parameter butir yakni bi dan ai Contoh 6 Lengkungan karakteristik butir L2P pada butir dengan bi = 1,0 dan ai = 0,5 dihitung pada  dari  3 sampai + 3 dengan lompatan 1,0 Karakteritik butir ini berbentuk dan dalam bentuk tabel diperoleh nilai probabilitas sukses (jawaban betul)

  29. ------------------------------------------------------------------------------Karateriktik Butir Model Logistik------------------------------------------------------------------------------  0,85(-1,0) Pi()  3 3,40 0,032  2 2,55 0,072  1 1,70 0,154 0 0,85 0,300 1 0,00 0,500 2  0,85 0,701 3  1,70 0,846 Pi() 1,0 0,8 0,6 0,4 0,2  3 2 1 0 1 2 3

  30. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 7 Ada 4 butir pada model L2P masing-masing dengan daya beda dan taraf sukar sebagai berikut Butir 1 2 3 4 Daya beda 0,5 1,2 0,5 1,0 Taraf sukar  1 0 1 2 Karakteristik butir dengan menggunakan D = 1,7 adalah Perhitungan untuk setiap butir adalah seperti pada contoh 6 Hasil perhitungan dapat disusun dalam bentuk tabel

  31. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Butir ai bi Pi() untuk  = i 3 2 1 0 1 2 3 1 0,5 1,0 0,154 0,300 0,500 0,700 0,846 0,928 0,968 2 1,2 0,0 0,002 0,017 0,115 0,500 0,885 0,983 0,998 3 0,5 1,0 0,032 0,072 0,154 0,300 0,500 0,701 0,846 4 1,0 1,0 0,001 0,006 0,032 0,154 0,500 0,846 0,968 Pi() 1,0 0,8 0,6 1 0,4 3 2 4 0,2  3 2 1 1 2 3 0

  32. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Tampak pada grafik bahwa makin besar taraf sukar butir b makin ke kanan letak grafik Butir 1 dengan b paling kecil terletak paling kiri sedangkan butir 3 dan 4 dengan b paling besar terletak paling kanan • Tampak juga pada grafik bahwa makin besar daya beda butir a makin curam grafiknya Butir 1 dan 3 dengan a kecil makin landai (tidak curam) grafiknya sedangkan butir 2 dan 4 dengan a lebih besar makin curam grafiknya • Kombinasi di antara daya beda butir dan taraf sukar butir menghasilkan grafik seperti di depan

  33. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 8 Ada 4 butir pada model L2P masing-masing dengan daya beda dan taraf sukar sebagai berikut Butir 1 2 3 4 Daya beda 0,3 1,2 1,6 1,8 Taraf sukar 1,0 0,5 0,0 1,5 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0 Contoh 9 Ada 4 butir pada model L2P masing-masing dengan daya beda dan taraf sukar sebagai berikut Butir 1 2 3 4 Daya beda 0,8 1,3 1,7 1,8 Taraf sukar 1,5 1,0 0,5 1,5 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0

  34. ------------------------------------------------------------------------------Karakteritik Butir Model Logistik------------------------------------------------------------------------------ 4. Lengkungan Karakteristik Butir L3P Untuk butir ke-i, model L3P memiliki tiga parameter butir yakni bi, ai, dan ci Contoh 10 Lengkungan karakteristik butir L3P pada butir dengan bi = 1,0, ai = 1,0, dan ci = 0,15 dihitung pada  dari  3 sampai + 3 dengan lompatan 1,0 Karakteritik butir ini berbentuk

  35. ------------------------------------------------------------------------------Karateriktik Butir Model Logistik------------------------------------------------------------------------------  1,7(-1,0) Pi()  3 6,8 0,151  2 5,1 0,155  1 3,4 0,177 0 1,7 0,281 1 0,0 0,575 2 1,7 0,869 3 3,4 0,973 Pi() 1,0 0,8 0,6 0,4 0,2  3 2 1 0 1 2 3

  36. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 11 Ada 4 butir pada model L3P masing-masing dengan daya beda, taraf sukar, dan kebetulan betul sebagai berikut Butir 1 2 3 4 Daya beda 0,2 0,5 1,0 2,0 Taraf sukar 1,0 0,0 1,0 2,0 Kebetulan 0,00 0,10 0,15 0,20 Karakteristik butir dengan menggunakan D = 1,7 adalah Perhitungan untuk setiap butir adalah seperti pada contoh 10 Hasil perhitungan dapat disusun dalam bentuk tabel

  37. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Butir ai bi ci Pi() untuk  = i 3 2 1 0 1 2 3 1 0,2 1,0 0,00 0,336 0,416 0,500 0,584 0,664 0,735 0,796 2 0,5 0,0 0,10 0,165 0,239 0,369 0,550 0,731 0,861 0,935 3 1,0 1,0 0,15 0,151 0,155 0,177 0,281 0,575 0,869 0,973 4 2,0 2,0 0,20 0,201 0,226 0,600 0,974 Pi() 1,0 0,8 0,6 1 2 0,4 3 4 0,2  3 2 1 1 2 3 0

  38. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Tampak pada grafik bahwa makin besar taraf sukar butir b makin ke kanan letak grafik Butir 1 dengan b terkecil terletak paling kiri sedangkan butir 4 dengan b terbedar terletak paling kanan • Tampak pada grafik bahwa makin besar daya beda butir a makin curam grafiknya Butir 1 dengan a terkecil paling landai (tidak curam) grafiknya sedangkan butir 4 dengan a terbesar paling curam grafiknya • Tampak juga bahwa kebetulan jawab betul c merupakan batas bawah dari grafik Butir 1 dengan c terkecil masih dapat lebih rendah lagi batas bawahnya sedangkan butir 4 memiliki batas bawah paling tinggi

  39. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ Contoh 12 Ada 6 butir pada model L3P masing-masing dengan daya beda dan taraf sukar sebagai berikut Butir 1 2 3 4 5 6 Daya beda 1,8 0,8 1,8 1,8 1,2 0,4 Taraf sukar 1,0 1,0 1,0 1,5 0,5 0,5 Kebetulan 0,00 0,00 0,25 0,00 0,10 0,15 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0 Contoh 13 Ada 5 butir pada model L3P masing-masing dengan daya beda dan taraf sukar sebagai berikut Butir 1 2 3 4 5 Daya beda 1,27 1,34 1,14 1,00 0,67 Taraf sukar 1,19 0,59 0,15 0,59 2,00 Kebetulan 0,10 0,15 0,15 0,20 0,01 Hitung dan lukis karakteristik butir ini dengan D = 1,7 untuk  dari  3 sampai + 3 pada lompatan 1.0

  40. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 5. Perbandingan karakteristik Butir Model Logistik Kita membandingkan model L1P, model L2P, dan model L3P • Bentuk yang paling banyak mengandung parameter adalah model L3P dengan ai, bi, dan ci bernilai ai  0 ci  0 • Bentuk L2P mengandung dua parameter butir ai dan bi yang dapat dianggap sebagai model L3P dengan nilai parameter ai 0 ci = 0 • Bentuk L1P hanya mengandung satu parameter butir bi yang dapat dianggap sebagai model L3P dengan nilai parameter ai = 1 ci = 0

  41. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Secara praktis, sebenarnya kita cukup menggunakan satu rumus saja yakni rumus untuk model L3P serta semua perhitungan yang mengikutinya • Ketika berlaku sebagai model L3P semua parameter digunakan • Ketika berlaku sebagai model L2P, parameter ci kita masukkan nilai ci = 0 sehingga yang digunakan hanya parameter butir ai dan bi • Ketika berlaku sebagai model L1P, parameter ai dan ci kita masukkan nilai ai = 1 dan ci = 0 sehingga yang digunakan hanya parameter butir bi

  42. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ E. Batas Nilai pada Model Logistik 1. Kemampuan Responden • Kemampuan responden memiliki rentangan yang luas • Secara teoretik rentangan ini terletak di antara – ∞ sampai + ∞ • Secara praktis rentangan ini cukup terletak di sekitar – 4    + 4 • Ada kalanya lebih dan ada kalanya kurang bergantung hasil perhitungan apakah sudah terlalu kecil atau sudah terlalu besar

  43. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 2. Probabilitas Sukses dan Gagal • Probabilitas sukses adalah probabilitas untuk dapat menjawab dengan betul Sebagai probabilitas, rentangan nilainya terletak di antara 0 dan 1 0  P()  1 • Probabilitas gagal adalah probabilitas untuk tidak dapat menjawab dengan betul (menjawab salah) Sebagai probabilitas, rentang nilainya juga terletak di antara 0 dan 1 0  Q()  1 • Terdapat hubungan di antara P() dan Q() berupa P() + Q() = 1

  44. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 3. Daya Beda Butir • Daya beda butir membedakan kemampuan berbeda dalam hal probabilitas sukses atau gagal • Karena kemampuan tinggi diasumsikan memiliki probabiltas lebih besar untuk sukses (atau paling sedikit sama) daripada kemampuan rendah maka daya beda a tidak boleh negatif a  0 • Dalam praktek biasanya daya beda a memiliki nilai tidak lebih dari sekitar 2 sehingga secara praktis rentangan nilai daya beda adalah 0  a  2

  45. ------------------------------------------------------------------------------Karateristik Butir Model Logistik------------------------------------------------------------------------------ 4. Kebetulan Betul • Dalam hal butir berbentuk jawaban pilihan ganda dapat saja terjadi bahwa jawaban betul atau sukses diperoleh melalui terkaan • Ada probabilitas tertentu untuk sukses dalam terkaan yakni bergantung kepada banyaknya pilihan • Untuk n pilihan probabilitas sukses melalui terkaan adalah P() = 1 / n sehingga c = 1 / n • Karena pilihan tersedikit adalah 2 pada pilihan betul-salah maka dalam praktek n terkecal adalah 2 sehingga dalam praktek 0  c  0,5

  46. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 5. Taraf sukar Butir • Taraf sukar butir memiliki skala yang sama dengan skala kemampuan responden sehingga secara teoretik rentangan nilainya adalah – ∞  b  + ∞ • Nilai taraf sukar butir diperoleh pada saat probabilitas sukses adalah 0,5 di antara probabilitas minimum dan maksimum yakni pada L1P dan L2P ketika P() = 0,5 pada L3P ketika P() = 0,5 (1 + c) • Dalam praktek, rentangan nilai b terletak di antara nilai –2 dan + 2 yakni – 2  b  + 2

  47. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 6. Karakteristik Butir dan Responden • Karakteristik butir Satu butir ke-i dijawab oleh banyak responden maka hasilnya dinamakan karakteristik butir dari butir ke-i Probabilitas sukses berbentuk Pi() untuk butir ke-i • Karakteristik responden Satu responden ke-g menjawab banyak butir maka hasilnya dinamakan karakteristik responden dari responden ke-g Probabilitas sukses berbentuk Pg() untuk responden ke-g

  48. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ F. Beberapa Ciri Model Logistik 1. Variansi • Pada data dikotomi, variansi adalah Var = Pi().Qi() • Pada model L1P, variansi adalah

  49. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ • Pada model L2P, variansi adalah • Pada model L3P, variansi adalah

  50. ------------------------------------------------------------------------------Karakteristik Butir Model Logistik------------------------------------------------------------------------------ 2. Kesempatan dan Logit Sukses • Kesempatan sukses (odds of success) yang berkenaan dengan kemampuan responden Untuk L1P dan L2P berbentuk Untuk L3P berbentuk

More Related