1 / 27

8. INTEGRASI NUMERIK

8. INTEGRASI NUMERIK. 8.4 Aturan Titik Tengah Gambar berikut adalah sebuah persegi panjang dari x = x 0 sampai x = x 1 dan titik tengah x = x 1/2 = x 0 + h /2. y. f ( x ). h. x. a=x 0 x 1/2 b=x 1. O. Gambar 8.4 Aturan titik tengah. y. …. Gambar 8.3

gladys
Download Presentation

8. INTEGRASI NUMERIK

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8. INTEGRASI NUMERIK

  2. 8.4 AturanTitik Tengah Gambarberikutadalahsebuahpersegipanjangdari x = x0sampaix = x1dantitiktengahx = x1/2 = x0 + h/2 y f (x) h x a=x0x1/2 b=x1 O Gambar 8.4 Aturantitiktengah

  3. y … Gambar 8.3 nbuahpersegipanjangdenganpanjangmasing-masingf (xn+h/2) x O a=x0x1x2 … xn-1 b=xn n = (xn – x0)/h (8.7)

  4. Luasn buahtitiktengahadalah (8.8) Persamaan (8.8) adalahhampiranintegrasif(x) denganmetodetitiktengah.

  5. Contoh 8.3 Dari tabelberikut, gunakanmetodetitiktengahdengann = 8 untukmengevaluasi integral

  6. Penyelesaian n = 8 ; xn = x8 = 2,0 ; x0 = 0,4 Dari persamaan (8.5) didapat h = (xn – x0)/n = (2,0 – 0,4) / 8 = 0,2

  7. Dari tabeldidapat: f (x0+h/2) = f (0,4+0,1) = f (0,5) = 4,4266 f (x1+h/2) = f (0,6+0,1) = f (0,7) = 3,4166 f (x2+h/2) = f (0,8+0,1) = f (0,9) = 3,0700 f (x3+h/2) = f (1,0+0,1) = f (1,1) = 3,0534 f (x4+h/2) = f (1,2+0,1) = f (1,3) = 3,2476 f (x5+h/2) = f (1,4+0,1) = f (1,5) = 3,5993 f (x6+h/2) = f (1,6+0,1) = f (1,7) = 4,0806 f (x7+h/2) = f (1,8+0,1) = f (1,9) = 4,6757

  8. 8.5 Aturan Simpson 1/3 Aturansimpson 1/3 adalahaturan yang mencocokkanpolinomialderajat 2 padatigatitik data diskrit yang mempunyaijarak yang sama. p2(x) y f (x) x x0 = 0 x1 = hx2 = 2h Gambar 8.4 Aturan Simpson 1/3

  9. Dari persamaan (8.5) s = (x – x0)/h ataux = x0 + sh Sehingga Untukx = x0, makas = 0 Untukx = x2, makas = 2

  10. ataudapatditulisdalambentuk (8.9)

  11. Contoh 8.4 Selesaikan denganmenggunakanmetode: Trapesium Titiktengah Simpson 1/3 Bandingkanhasilmasing-masingmetodedengansolusisejatinya. Penyelesaian h = 0,10

  12. a. MetodeTrapesium n = (xn – x0)/h = (1 – 0) / 0,1 = 10

  13. I  0,05(0,5000 + 1,0476 + 1,0909 + 1,1304 + 1,1666 + 1,2000 + 1,2308 + 1,2592 + 1,2856 + 1,3104+0,6666  0,59438

  14. b. Metodetitiktengah: f (x0+h/2) = f (0,0+0,05) = f (0,05) = 0,5122 f (x1+h/2) = f (0,1+0,05) = f (0,15) = 0,5348 f (x2+h/2) = f (0,2+0,05) = f (0,25) = 0,5556 f (x3+h/2) = f (0,3+0,05) = f (0,35) = 0,5744 f (x4+h/2) = f (0,4+0,05) = f (0,45) = 0,5918 f (x5+h/2) = f (0,5+0,05) = f (0,55) = 0,6078 f (x6+h/2) = f (0,6+0,05) = f (0,65) = 0,6226 f (x7+h/2) = f (0,7+0,05) = f (0,75) = 0,6364 f (x8+h/2) = f (0,8+0,05) = f (0,85) = 0,6491 f (x9+h/2) = f (0,9+0,05) = f (0,95) = 0,6610

  15. c. Metode Simpson 1/3 n = (xn – x0)/h = (1 – 0) / 0,1 = 10

  16. Solusisejati

  17. 8.6 Aturan Simpson 3/8 Aturansimpson 3/8 adalahaturan yang mencocokkanpolinomialderajat 3 padaempattitik data diskrit yang mempunyaijarak yang sama. y f (x) pn(x) x1 = h x2 = 2h x3 =3h x0 = 0 x Gambar 8.5 Aturan Simpson 3/8

  18. Dari persamaan (8.5) s = (x – x0)/h ataux = x0 + sh Sehingga Untukx = x0, makas = 0 Untukx = x2, makas = 2

  19. ataudapatditulisdalambentuk Selesaikandenganmetode Simpson 3/8 Contoh 8.5 (8.9) dengann = 9. Bandingkanhasilnyadenganmetodetrapesium, titiktengah, Simpson 1/3 dandengansolusisejati. Penyelesaian

  20. Untukn = 9  h = ( 1 – 0)/9 = 1/9

  21. Itotal 3h/8{ f0 + 3( f1 + f2 + f4 + f5 + f7 + f8 )+ 2(f3 + f6 ) + f6 }  (3/8)(1/9){ 1,16666 + 10,70931+ 2,39286}  0,59453

More Related