1 / 22

8. INTEGRASI NUMERIK ( Lanjutan )

8. INTEGRASI NUMERIK ( Lanjutan ). 8.8 Metode Newton-Cotes Bentuk umum dari metode Newton-Cotes ditunjukkan pada persamaan berikut . (8.9) . n = jumlah pias ( strip ) h = lebar pias = ( b – a )/ n f i = f ( x i ) x i = a + ih α = koefisien

gunnar
Download Presentation

8. INTEGRASI NUMERIK ( Lanjutan )

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 8. INTEGRASI NUMERIK (Lanjutan)

  2. 8.8 Metode Newton-Cotes Bentukumumdarimetode Newton-Cotes ditunjukkanpadapersamaanberikut. (8.9) n = jumlahpias (strip) h = lebarpias = (b – a)/n fi = f (xi) xi= a + ih α = koefisien β = koefisien E = Galat

  3. Tabel 8.1 Rumus Newton-Cotes

  4. Tabel 8.1 Rumus Newton-Cotes (lanjutan) Tabel 8.1 adalahtujuhdari 10 rumus Newton-Cotes. Rumus 1 sampai 4 masing-masingdidapatdenganaturantrapesium, Simpson 1/3, Simpson 3/8, dan Boole. Rumus 5 danseterusnyadidapatdenganmenggunakanpolinominterpolasiselisihmajuderajat 4, 5, danseterusnya.

  5. Contoh 8.6 Turunkanrumus Newton-Cotes derajat 4 Penyelesaian

  6. = 4f0 + 8 f0 + 20/3 2f0 + 8/3 3f0 +42/135 4f0

  7. f0= f1 – f0 2f0 = f1 – f0=(f2 – f1) – (f1 – f0) = f2 – 2f1+ f0 3f0 = 2f1– 2f0= (f3 – 2f2 + f1) – (f2 – 2f1 + f0) = f3 – 3f2 + 3f1 – f0 4f0 = 3f1– 3f0= (f4 – 3f3 + 3f2 – f1) – (f3 – 3f2 + 3f1 – f0) = f4 – 4f3 + 6f2 – 4f1 + f0

  8. I = 4f0 + 8 f0 + 20/3 2f0 + 8/3 3f0 + 42/135 4f0 = 4 f0 + 8( f1 – f0) + 20/3(f2 – 2f1+ f0)+8/3(f3 –3f2 + 3f1 – f0) +42/135 (f4 – 4f3 + 6f2 – 4f1 + f0) = 4 f0 + 8 f1 – 8 f0 + 20/3 f2 – 40/3f1+ 20/3f0 + 8/3f3 – 8f2 + 8f1 – 8/3f0 + 42/135 f4 –168/135f3 + 252/135f2 –168/135f1 + 42/135f0 = 42/135 f0 +192/135 f1 + 72/135 f2 + 192/135 f3 + 42/135 f4 = 14/45 f0 +64/45 f1 + 24/45 f2 + 64/45 f3 + 14/45 f4 = 28/90 f0 + 128/90 f1 + 48/90 f2 + 128/90 f3 + 28/90 f4 = 4(1/90)(7f0 + 32 f1 + 12/90 f2 + 32/90 f3 + 7/90 f4) n = 4,  = 1/90, α0 = 7, α1 = 32, α2 = 12, α3 = 32, α4 = 7

  9. 8.9 KuadraturGauss Hasilintegrasisejatif (x) darititikasampaititikb adalah (8.10) HasilintegrasisejatiditunjukkanpadaGambar 8.7a. Jikaintegrasidiselesaikandenganmenggunakanmetodetrapesium, maka (8.11) seperti yang ditunjukkanpadaGambar 8.7b. GalatpadametodetrapesiumdapatdiperkecildenganmenggunakanmetodeKuadraturGauss.

  10. f (x) f (x) x x a b a b (b) (a) Gambar 8.7

  11. Jikakaidahtrapesiumditerapkanpadafungsikonstanataufungsi linier, danditulisdalambentukkoefisientaktentu, makaakanmenghasilkannilaisejatidalambentuk Persamaan (8.12) adalahrumusGauss-Legendre 2 titik. Persamaan (8.12) dapatdigeneralisirmenjadirumus Gauss-Legendre untukn titik. (8.12) (8.13)

  12. Gabungkan pers. (810) dengan (8.13) didapat Selanjutnyalakukantransformasibidangxkebidangt. Dari Gambar 8.8 x = a t = –1 x = b  t = 1 Didapat (8.14) (8.15) (8.16)

  13. f (x) F (t) t x –1 t1t21 a x1x2 b (a) (b) Gambar 8.8 Transformasibidangxkebidangt

  14. Dari persamaan (8.18), didapatf (x) = f (mt + c) DefinisikanF(t) = f (mt + c) = f (x) (8.20) (8.17) Substitusi pers. (8.15) – (8.20) ke pers. (8.14), didapat Jika makapersamaan (8.16) menjadi (8.18) (8.21) dandx= m dt (8.19)

  15. Dari persamaan (8.21) didapat Berikutakanditentukannilai (8.22) untuk n = 2 dannilaiF(t) = 1, t, t2 , dant3 (8.23a)

  16. (8.23b) (8.23c) (8.23d)

  17. Persamaan (8.23 a) sampai (8.23d) DidapatC1 = C2 = 1

  18. Contoh 8.7 Diketahuf(x) = 1/x, batasbawah = 3,1, batasatas 3,9. Tentukanhampiranintegrasif(x) denganmenggunakankuadratur Gauss duatitikdengansatu interval. Penyelesaian f(x) = 1/x ; a = 3,1; b = 3,9 ; n = 2

  19. x = mt + c = 0,4 t + 3,5  dx = m dt= 0,4 dt Dari persamaan (8.21)

  20. Latihan Diketahuf(x) = 1/x, batasbawah = 3,1, batasatas 3,9. Tentukanhampiranintegrasif(x) denganmenggunakankuadraturGauss tigatitikdengansatu interval. Penyelesaian f(x) = 1/x ; a = 3,1; b = 3,9 ; n = 2

More Related