600 likes | 843 Views
PROPRIEDADES DA SUBSTÂNCIA PURA COMPRESSÍVEL. Manuel F.Barral. 2.1. ESTADO DE SUBSTÂNCIA PURA COMPRESSÍVEL SIMPLES.
E N D
PROPRIEDADES DA SUBSTÂNCIA PURA COMPRESSÍVEL Manuel F.Barral
2.1. ESTADO DE SUBSTÂNCIA PURA COMPRESSÍVEL SIMPLES. Substancia pura é aquela cuja composição química é invariável e homogênea. Pode existir em mais de uma fase, mas a composição química é a mesma em todas as fases. Água líquida, uma mistura de água liquida e vapor d’ água ou uma mistura de água liquida e gelo são substâncias simples. O estado de um sistema em equilíbrio é descrito pelo valor de suas propriedades termodinâmicas. Pela observação dos sistemas termodinâmicos, é conhecido que nem todas essas propriedades são independentes uma das outras. O estado é definido pelo valor das propriedades independentes. Os valores de todas as outras propriedades são obtidos a partir dos valores dessas propriedades independentes.
Assim, baseado em evidência experimental, verifica-se que o estado de um gás puro fica definido pelos valores do volume, V, da quantidade de substância, número de moles, n, da pressão, P, e da temperatura, T. No entanto, verifica-se experimentalmente que basta especificar três dessas substancias para que a quarta seja determinada. Isto é equivale a dizer que possível encontrar uma relação entre três variáveis que determina a quarta. Essa relação é denominada equação de estado. A formal geral dessa equação será: Por exemplo: equação dos gases ideais. Definindo: Volume específico Volume específico molar Equação dos gases ideais pode ser escrita como:
Exercício 2.1 Calcular a constante particular dos seguintes gases. C= 12,011; Cl= 35,453;F=18,9984 H=1,0079; N=14,0067; O = 15,9994
Relações P-v-T para gases. Exemplo 2.1.Determine a massa de ar contida numa sala de 6 m x 10 m x 4 m quando a pressão for 101,325 kPa e a temperatura for 25 oC. Que hipótese deve ser considerada para realizar o cálculo?
Exemplo 2.2.Um reservatório de gás como indicado na figura abaixo contém CO2. A massa do reservatório é contrabalançada por um sistema constituído pela massa , cabo e polias. A pressão e a temperatura no CO2 são constantes e iguais a 105 kPa e 21 oC. O reservatório foi alimentado durante por 185 s com CO2 e determinou-se, após o termino da operação, que o volume do gás aumentou 7,5 m3. Qual a vazão volumétrica e a mássica que alimenta o reservatório?
Exemplo 2.3. A massa de uma esfera oca de metal com diâmetro interno igual a 150 mm é determinada quando está vazia e novamente determinada quando contém um gás desconhecido. Sabendo-se que a pressão na esfera é 875 kPa e que a diferença entre as massas determinadas é de 0,0025 kg, admitindo-se que o gás é perfeito,determinar a RG e com auxílio da tabela A.5 determinar o gás que está armazenado na esfera sabendo-se que a temperatura é 25 0C.
2.2. EQUILÍBRIO DE FASES VAPOR-LÍQUIDA-SÓLIDA NUMA SUBSTÂNCIA PURA. O que ocorre ao fornecermos calor a uma certa quantidade de água (substância pura)?
a) m= 1kg ; p= 101,3 kPa; 20 0C. Durante esta etapa , observa-se aumento da temperatura e aumento ( pequeno do volume), ou seja, pequeno aumento do volume específico da água b) M= 1 kg; P = 0,1 MPa; T = 99,6 oC. Nestas condições ocorre mudança de fase, líquido em vapor, e ocorre aumento de Volume,( volume específico) da água. Nesta etapa P e T são constantes c) M= 1 kg; P = 0,1 MPa; T = 110 oC. Quando todo o liquido for vaporizado, com o fornecimento de calor aumenta a temperatura e o volume do vapor.
Diagrama T –V- P. Diagrama T-v-P para a água.
Temperatura de saturação e pressão de saturação.A temperatura na qual ocorre a vaporização a uma dada pressão é chamada temperatura de saturação. A pressão na qual ocorre a vaporização a uma dada temperatura é chamada de pressão de saturação. Exercício 2.4. Qual a temperatura de saturação da água a 46,6 kPa? Qual a pressão de saturação a 60 oC? Líquido saturado: quando uma substância está na forma líquida na temperatura e na pressão de saturação (em ebulição) Vapor saturado: quando uma substância está na forma gasosa na temperatura e na pressão de saturação (em ebulição)
Líquido sub-resfriado: quando a temperatura do líquido está à temperatura mais baixa que a temperatura de saturação do líquido para uma dada pressão. Exercício 2.5. Indique valores de temperatura e pressão nos quais a água é um líquido sub-resfriado. Ts = 100 oC a 101,3 kPa. Líquido comprimido: a pressão do líquido é mais alta que a pressão de saturação para uma dada temperatura. Exercício 2.6. Indique valores de temperatura e pressão nos quais a água é um líquido comprimido. Vapor superaquecido: quando a temperatura do vapor está à temperatura mais alta que a temperatura de saturação do vapor para uma dada pressão
Título . Quando uma substância tem uma parte na fase líquida e outra na fase vapor, na temperatura de saturação, existem diversas relações entre as quantidades de líquido e as de vapor. Uma relação entre as quantidades de massa é chamada de título. Assim se a quantidade de vapor for 0,2 kg e quantidade de líquido for 0,8 kg seu título será 0,2 ou 20 %. Só se poder falar em título quanto a substancia esta no estado de saturação, o seja, na pressão e temperatura de saturação. onde x = fração mássica de líquido, também conhecida como título do líquido, e y é a fração mássica de vapor, também conhecida como título do vapor.
2.3.Transformações da substância pura Vapor saturado seco
Considere a linha AB (de pressãoconstante) A pressão nessa linha é 0,1 MPa. Água a 20 0C e 0,1 MPa está na fase líquida. Se fornecermos calor aumenta-se a temperatura do sistema. Da Tabela B1.1 obtém-se: 99,6 oC A temperatura de saturação a essa pressão é 99,60 oC (0,1 MPa). Isso significa que a água a 20 oC e 0,1 MPa , assim como a 25 oC, 35 oC, 75 oC, 98 oC está a uma temperatura abaixo da temperatura de saturação a essa temperatura e, nessas condições, a água é um líquido sub-resfriado. Por outro lado , a pressão de saturação a 20 oC é 2,3385 kPa, e como o líquido está a 100 kPa, o fluido é um liquido comprimido. No ponto B, TB = 99,60 oC que é a temperatura de saturação e y =0.
Reta BC. Quando a água atinge a temperatura de saturação, um fornecimento adicional de calor leva a mudança de fase, de líquido para vapor com aumento do volume ( e do volume específico) do sistema a P e T constantes. Ao longo da reta BC varia o título e o volume ( volume específico). Ponto C. É o ponto de vapor saturado. No ponto B, TC = 99,60 oC que é a temperatura de saturação do vapor. Título do vapor, y = 100 %. A partir do ponto C todo o liquido é convertido em vapor
Linha CD. Vapor superaquecido. O a fornecimento de calor leva a aumento da temperatura. Pressão e temperatura de vapor superaquecido são propriedades independentes. Exercício 2.7. Considere a linha de pressão constante, P= 1 MPa, EF. Em que estado está a água nessa linha sabendo-se que a temperatura da água é 20 oC? O que indica o ponto F? E o ponto G? Qual a temperatura de saturação do líquido? e a do vapor? O que caracteriza a linha GH? Ts( 1 MPa) = 179,91 oC ou Ps( 20 0C) = 2,3385 kPa
Exercício 2.8. Considere a linha de pressão constante MNO, P= 22,09 MPa. Qual a temperatura em N? Em que estado está a água nessa linha? O que caracteriza geometricamente o ponto N? Tc= 374,14 0C Exercício 2.9 Considere a linha de pressão constante PQ, P=40 MPa. Em que estado está a água nessa linha? O que ocorre se a temperatura for reduzida até 20 oC?
P<Pc;T>Tc => vapor superaquecido; 2.4. Condições críticas Fluido supercrítico P>Pc ; T>Tc. P<Pc;T<Tc => vapor superaquecido; P<Pc; T<Tc => liquido comprimido; Fluido P> Pc p/a qualquer Temp.
2.4. Condições críticas líquido comprimido Fluido supercrítico sólido comprimido vapor superaquecido
Propriedades críticas de substâncias Substância Temperatura Pressão Volume específico Crítica ( oC) Crítica (MPa) crítico (m3/kg) Água 374,14 22,09 0,003155 Dióxido de carbono 31,05 7,39 0,002143 Oxigênio -118,35 5,08 0,002438 Hidrogênio -239,85 1,30 0,032192 Nitrogênio -146,95 3,39 0,089800
2.5. Título Os índices l e v são designados para caracterizar líquido saturado e vapor saturado. Um estado saturado significa um estado com uma mistura de líquido saturado e vapor saturado. E. 2.10. Sendo o sistema água contida num recipiente,qual o volume do sistema se for conhecido o volume específico do líquido saturado, vl, a massa de líquido, ml, o valor do volume específico volume específico do vapor saturado , vv, e massa de vapor, mv? Qual o volume específico do sistema, ou seja, como se relaciona o volume específico do sistema com o volume específico do líquido saturado e do vapor saturado?
Exercícios E. 2.11. Calcular o volume específico do vapor com titulo y = 0,20 a 120 oC. E.2.12. Se o volume específico do vapor com título de 0,7 é 0,31275 m3/kg , calcular a pressão e temperatura do sistema.
Diagrama P-v-T Ponto critico
Transformações da substância pura a) m= 1kg ; p= 100,0 kPa; -20 0C. Durante esta etapa , observa-se aumento da temperatura até atingir 0 oC e pequeno aumento do volume, ou seja, pequeno aumento do volume específico da água b) m= 1kg ; p= 100,0 kPa; 0 0C. Durante esta etapa, a temperatura permanece constante enquanto o gelo funde. O sólido no inicio do processo é chamado de sólido saturado. A maioria das substâncias têm aumento de volume específico. A água é uma exceção, o volume da água líquida é menor, na região de equilíbrio, é menor do que o da água sólida.
Transformações da substância pura c) m= 1kg ; p= 100,0 kPa; 0 0C. Durante esta etapa, a temperatura aumenta até atingir 99,6 0C. O volume específico diminui até 4 oC e, em seguida, a aumenta. d) m= 1kg ; p= 0,260 kPa; -20 0C. A temperatura aumenta até atingir -10 oC. Nesse ponto o gelo passa da fase sólida para a fase vapor. Qualquer fornecimento de calor adicional leva a um aumento da temperatura e superaquecimento do vapor . e) m= 1kg ; p= 0,6113 kPa; -20 0C. A temperatura aumenta até atingir 0,01 oC. Nesse ponto qualquer transferencia adicional de calor leva a mudança de fases: de gelo para água líquida ou vapor d`água. Existe equilíbrio de três fases : sólifa, líqida e gaossa. Ponto triplo. Qualquer fornecimento de calor adicional leva a um aumento da temperatura e superaquecimento do vapor .
Diagrama de fases G H E F C D A B
Transformações da substância pura Processo EF Sólido ( -20 oC 100 kPa). Sólido sub-resfriado, Sólido comprimido a) Calor a P constante, T aumenta ate 0 oC e v aumenta ligeiramente. b) Calor a P constante, fusão do gelo. Sólido saturado. Equilíbrio Sólido / líquido. c) Calor a P constante, já visto. d) Calor a P constante, já visto. Processo AB Sólido ( -20 oC 0,260 kPa) a) Calor a P constante, T aumenta ate -10 oC. Sólido sub-resfriado b) Calor a P constante, fusão do gelo. Sublimação do gelo que se torna vapor. c) Calor a P constante, já visto. Processo CD Sólido ( -20 oC 0,6113 kPa) a) Calor a P constante, T aumenta ate 0,01 oC. Sólido sub-resfriado b) Calor a P constante, fusão do gelo. Equilíbrio Sólido/líquido/vapor.Ponto triplo da água. c) Calor a P constante, já visto.
O ponto triplo de uma substância é a temperatura e a pressão nas quais os três fases (sólida, líquida e gasosa) coexistem em equilíbrio termodinâmico. O ponto triplo a temperatura da água é exatamente 273,16 kelvin (0,01 °C) e a pressão é 611,73 pascal (cerca de 0,006 bar). O ponto triplo do mercúrio é a -38.8344 °C e a 0,2 mPa. The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. BIPM O ponto triplo da água é usado para definir o kelvin, a unidade de temperatura termodinâmica no Sistema Internacional de Unidades. O número dado para a temperatura do ponto triplo da água é uma definição exata, e não uma quantidade medida.
Exercícios Exercício 2.13. Considere a água como fluido de trabalho e os estados termodinâmicos definidos por a) 120 oC e 500 kPa e b) 120 oC e 0,5 m3/kg. Determine a fase de cada um dos estados indicados utilizando as tabelas termodinâmicas dadas. Indique a posição desses estados (a) e (b) no diagrama p-v,T, T_v,p e p-T(diagrama de fases. a)T = 120 oC => Psat = 198,53 kPa => líquido comprido P = 500 kPa => Tsat = 151.9 oC (B1.1.2) T = 120 oC | > líquido comprido P = 500 kPa | a) T = 120 oC => Psat = 198,53 kPa => líquido comprido v = 0,5 m3/kg => vl = 0,001061 m3/kg; vv =0,8915 m3/kg estado saturado, eq. líd/vapor
Exercícios título=0,56
Exercício 2.14. Considere os seguintes fluidos e estados termodinâmicos definidos por: a) amônia a 30 oC e 1000 kPa. b) R-22 a 200 kPa e v = 0,15 m3/kg. Determine a fase de cada um dos estados indicados utilizando as tabelas termodinâmicas dadas. Indique a posição desses estados (a) e (b) no diagrama de fases , p-v,T e p-T. a) B.2.1 Se Tsat = 30 oC => Psat = 1167,0 kPa. Se Psat =1000 kPa então Tsat = 24,9 oC 20 oC 857,5 kPa x 1000 kPa 25 oC 1003,2 x = 24,9 oC. Liq sat. Como temos amônia a 30 oC e 1000 kPa então trata-se de amônia como vapor superaquecido. Figura 2.9.
b) R-22 a 200 kPa e v = 0,15 m3/kg. Tabela B4.1. P = 201, kPa; T = -25 oC. vl =0,000733 m3/kg; vv = 0,111859 nm3/kg, como v>vv então trata-se de vapor superaquecido. T = ?? P = 200 kPa 40 oC 0,146809 m3/kg; x 0,15000 m3/kg; x = 46,3 oC. 50 oC 0,151902 m3/kg;
Obs. Protocolo de Montreal O Protocolo de Montreal prevê a redução gradual da produção dos CFCs até a sua eliminação total em 2010. Para 2007 se prevê que o nível de produção dos CFC deve ser 15 % da produção média entre 1995 e 1997. http://www6.cptec.inpe.br/mudancas_climaticas/pdfs/the_montreal_protocol.pdf
Exercício 2.15. Determine a temperatura e o título (se aplicável) para a água nos seguintes estados: a) v = 0,5 m3/kg e 300 kPa. b) v = 1,0 m3/kg e 300 kPa. Determine a fase de cada um dos estados indicados utilizando as tabelas termodinâmicas dadas. Indique a posição desses estados (a) e (b) no diagrama de fases ( P-T) , p-v e T-v-T a) B1.2 Psar = 300 kPa ; Ts = 133,5 oC. vl = 0,001073 m3/kg vv = 0,6058 m3/kg. v entre os valores de vl e vv => água no equilíbrio L/V v = (1-y) 0,001073 + y 0,6058 => 0,5 = (1-x) 0,001073 + x 0,6058
b) B1.2.1 Psar = 300 kPa; Ts = 133,5 oC. v = 1,0 m3/kg. vl = 0,001073 m3/kg e vv = 0,6058 m3/kg. Vapor superaquecido. P = 300 kPa qual a temperatura? 300 kPa 300 oC 0,87529 m3/kg. X 1,00 x = 379,8 oC. 400 oC 1,03151 m3/kg
Exemplo 2.16. Um recipiente fechado contém uma mistura saturada (liq. saturado e vapor saturado) do fluido refrigerante R 134a a 30 oC. Sabendo-se que o volume ocupado pala fase liquida é 0,1 m3 e o volume da fase vapor é 0,9 m3, determine o título da mistura no recipiente. B1.2.1. T = 30 oC => Psat = 771,0 kPa. vl = 0,000843 m3/kg e vv = 0,0267075 m3/kg. Vl = ml*0,000843 => ml = 118,64 kg. Vv = mv*0,0267075 => mv = 33,7 kg. M = 152,3 kg y = 0,221 ou 22,1 %. Exemplo 2.17. Um vaso rígido contém vapor saturado de amônia a 20 oC . Transfere-se calor para o sistema até que a temperatura atinja 40 oC . Qual a pressão final? B.2.1 => T 20 oC => Psat = 857,5 kPa . vv1= v2 = 0,14928 m3/kg T = 40 0C => Psat = 1554,9 kPa => vv 0,08313 m3/kg. Como v = 0,14928 m3/kg > 0,08313 m3/kg então o vapor é vapor superaquecido. Qual a pressão ? B2.2. T = 40 oC. 900 kPa 0,1558 m3/kg. X 0,14928 x = 938,13 kPa. 1000 kPa 0,1387
Exemplo 2.18. Se nitrogênio for o fluido de trabalho determinar: a) v e o título (se pertinente) à temperatura de -52,2 oC e P = 600kPa; b) a pressão e o título se a temperatura for 100 K e o volume específico = 0,008 m3/kg. a) B.6.1 T = 221 K > Tc ( 126,2 K) 0,6 MPa => Ts = ? 95 0,54082 MPa x 0,600 MPa x = 96,24 K. 100 0,77881 MPa Vapor superaquecido.
Das tabela de vapor superaquecido de N2 temos: x = 0,120492 m3/kg; y = 0,059657 m3/kg A 221 K z = 0,108325 m3/kg
b) T = 100 K e v = 0,008 m3/kg. T = 100 K => Psat = 0,77881 MPa e vl = 0,001452 m3/kg e vv = 0,031216 m3/kg. Estado saturado, mistura saturada. = (1-y) 0,001452 + y 0,0,031216 => 0,08 = 0,001452 + y 0,029764 y = 0,22 x = 22 %
Exemplo 2.19. A temperatura e o volume específico de uma amostra de água: a) T = 225 oC e v = 0,4 m3/kg. Determine a pressão da amostra B1.1. Ts = 225 oC => 2,5477 MPa. vv = 0,001199 m3/s e vl = 0,07849 m3/s. Portanto fora da região de saturação.Superaquecido
Comportamento p-V-T de gases quando para ρ pequenas ou moderadas Eq. 1 Eq. 2 Eq. 3 Como sabemos, a Eq. 1, Eq. 2 ou Eq. 3 só representam satisfatoriamente gases reais a baixas pressões. Para gases reais a pressões um pouco mais elevadas e gases poliatômicos os resultados obtidos com a equação do gás ideal não é satisfatório, sendo necessário outras, para gases reais, equações essas mais elaboradas.
Comportamento p-V-T de gases reais A equação de estado para gás real mais antiga é a equação de van der Waals (1873) e foi apresentada como uma melhoria semi-teórica da equação de gases ideais, que na forma molar é; Uma outra equação, considerada mais precisa que a equação de van der Waals e com o mesmo nível de dificuldade é a equação de Redlich -Kwong (1949), que para propriedades molares é: