1 / 9

Corpuri geometrice-Arii si volume

Corpuri geometrice-Arii si volume. Prisma(cubul, paralelipipedul), Piramida, Trunchi de piramida Profesor: Doina Paun Grupa a IV- a Bulboaca Mircea Hartegan Dragos, Scurtu Bogdan, Tudor Ovidiu. Cubul & paralelipipedul. PARALELIPIPED

lan
Download Presentation

Corpuri geometrice-Arii si volume

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Corpurigeometrice-Ariisi volume Prisma(cubul, paralelipipedul), Piramida, Trunchi de piramida Profesor: Doina Paun Grupa a IV- a Bulboaca Mircea Hartegan Dragos, Scurtu Bogdan, Tudor Ovidiu

  2. Cubul & paralelipipedul PARALELIPIPED • CUBUL I H I H F G F D C D C G A B A B

  3. Piramidapatrulateraregulata & prismapatrulateraregulata PIRAMIDA PATRULATERA REGULATA I H V F G D C D C T A B A B PRISMA PATRULATERA REGULATA

  4. Prisma-cubul Cubulestepoliedrul care are toatefetelepatrate . V cub =Ab * h, undeAb=aria bazei Ab = l*l 1 l=h 2 Din 1 si 2 => Vcub = l3 At = Al + Abt1 At = arietotala, Al = arielaterala, Abt = ariebazatotala Al = Af * 4 , Af = l*l 2Af = aria unei fete Ab t = Ab * 2, Ab = l*l 3Ab = aria uneibaze Din 1, 2 si 3 => At = 6 * l Fie cubul ABCDFGHI AC =l√21 CH = l 2 ABH= triunghidreptunghic3 Din 1 2 si 3 + TeoremaluiPitagora => AH = l√3 diagonalacubului = l√3 bf

  5. Prisma- Paralelipiped Paralelipipedulestepoliedrul care are bazeledreptunghiuri. V= Ab * h 1Ab = aria bazei Ab = L*l 2 Din 1 si 2 => V= L*l*h At = 2(A1 + A2 + A3 ) 1 At = arietotala, A1 = arie fete laterale, A2 = ariebazatotala A3 = arie fete laterale A1 = L*l A2 = l*h A3 = L*h => At = 2(L*l + l*h + L*h) Fie paralelipipedul ABCDFGHI ABC – dreptunghic in B  (T.P) AC= AB2 + BC2 ACH – dreptunghic in C  (T.P) AH= AB2 + BC2 + CH2 diagonalaparalelipipedului= l2 + L2 + h2

  6. Piramida-regulata Poliedrul cu baza poligon regulat si muchiile laterale respectiv congruente se numeste piramida regulata. Inaltimea unei piramide “cade” in centrul bazei. Orice piramida triunghiulara se numeste tetraedru. Inaltimea unei fete laterale se numeste apotema piramidei. Formule ( piramida patrulatera regulata) At = Al + Ab 1 At = aria totala Al = aria laterala Ab = aria bazei Al = 4 * Af Af = ap * lb ap – apotema piramidei lb – latura bazei Al = ap * 4* lb 2 Ab = l* l 3 Din 1 2 si 3 => At = l2 + ap * 4* lb Volumul unui tetraedru este un numar egal cu o treime din produsul dintre aria unei fete oarecare si inaltimea corespunzatoare ei. Volumulpiramidei = Ab * h /3 h= inaltimea piramidei

  7. Trunchi de piramida Prin sectionarea unei piramide cu un paln paralel cu baza se obtine o piramida asemenea cu piramdia initiala si un trunchi de piramida, iar sectiunea obtinuta va fi un poligon asemenea cu baza piramidei. Elementele unui trunchi de piramida: - doua baze(poligoane asemenea) - fetele laterale sunt trapeze Trunchi de piramida provenit dintr-o piramida regulata se va numi trunchi de piramida regulata. Trunchi de piramida cu baza patrat At = Ab.m ari + Al + Ab.mici Abazei mari = L2 A bazeimici = l2 A l = 4* L*l At = 4* L*l + L2 + l2 Vtrunchi de piramida = h · (L + l + AB · Ab) / 3

  8. Multumimpetnruvizionare

More Related