1 / 12

BARISAN GEOMETRI

BARISAN GEOMETRI. Di Susun Oleh Fitria Irdayani 11215201395. Sebelumnya APAKAH KALIAN TAHU APA ITU Barisan ? Barisan aritmatika dan barisan geometri ?. Barisan bilangan. Barisan aritmatika. b. geometri.

minnie
Download Presentation

BARISAN GEOMETRI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BARISAN GEOMETRI Di SusunOleh FitriaIrdayani 11215201395

  2. Sebelumnya APAKAH KALIAN TAHU APA ITU Barisan ? Barisanaritmatikadanbarisangeometri ?

  3. Barisanbilangan Barisan aritmatika b. geometri Pernahkah kalian memperhatikansusunanminumumandi super market ? Cara penonton yang dudukditribunstadion ? Ataususunannomorrumahdisebuahperumahan ??

  4. BarisanBilangan Barisanbilanganadalahsuatupolabilangan yang disusunberdasarkanaturantertentu. MISALKAN

  5. PerhatikanSusunanGambar Logo UinSuskaBerikut !

  6. G1 = 1, G2 = 2, G3 = 3, G4 = 4, G5 = 5, G6 = 6 G1 = 1 G2 = 1 + … = 2 => masukkan G1 1 + 1 G3 = 1 + 1 + … = 3 => masukkan G2 1 + 1 + 1 G4 = 1 + 1 + 1 + … = 4 =>masukkan G3 1 + 1 + 1 + 1 • Jadi, dapatdisimpulkanbahwabarisanaritmatikaadalahbarisanbilangan yang tiapsukunyadidapatdarisukusebelumnyadengancaramenambahataumengurangnyadengansuatubilangantetap, bilangantetaptersebutdisebutbeda. • Disinibedanyaadalah 1.

  7. GEOMETRI Untukbarisangeometrimariperhatikangambardibawahini ! Perhatikansusunandudukpenontondisetiaptribunataubangkupenonton yang sedangmenyaksikanpertandinganvollyberikut :

  8. T3 T2 T1

  9. T1 = 1, T2 = 3, T3 = 9 Artinya : T1 = 1 T2 = 1 x … = 3 => masukkan T1 1 x 3 T3 = 1 x 3 x … = 9 => masukkan T2 1 x 3 x 3 Maka T4 = 1 x 3 x 3 x … = 27 => masukkan T3 1 x 3 x 3 x 3 Jadidapatdisimpulakanbahwabarisangeometriadalahsuatubarisanbilangan yang didapatdarisukusebelumnyadengancaramembagiataumengalikannyadengansuatubilangantetap yang disebutRasio. Disinirasionyaadalah 3.

  10. Mencarirumussukuke- n Perhatikan T3 T3 = 1 x 3 x 3 = T1 x r x r = T1 x r2

  11. Ubahkeaturan U3 = a x r2 Un = a x rn-1 Jadirumussukuke-n daribarisangeometriadalah Un = a x rn-1

  12. SemogaBermanfaat SEE YOU NEXT TIME GOOD BY TERIMAKASIH

More Related