1 / 14

Hubungan Tetapan Kesetimbangan Dengan Energi Bebas Gibbs

Hubungan Tetapan Kesetimbangan Dengan Energi Bebas Gibbs. Riza Gustia (A1C109020). α A + β B ↔ γ C + δ D. Jika reaksi mencapai kesetimbangan , ΔG= 0 Menurut persamaan reaksi isotherm van’t hoff : ΔG= ΔG⁰ + RT ln Kes = 0 ΔG⁰ = - RT ln Kes ΔG⁰ = - RT ln K

Download Presentation

Hubungan Tetapan Kesetimbangan Dengan Energi Bebas Gibbs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. HubunganTetapanKesetimbanganDenganEnergiBebas Gibbs RizaGustia (A1C109020)

  2. αA + βB ↔ γC + δD Jikareaksimencapaikesetimbangan, ΔG= 0 Menurutpersamaanreaksi isotherm van’thoff: ΔG= ΔG⁰ + RT lnKes = 0 • ΔG⁰ = - RT lnKes • ΔG⁰ = - RT ln K • K= tetapankesetimbangan =

  3. Untukreaksi gas ideal : ΔG⁰ = - RT lnKp Kp = kes Untukreaksidalamlarutan ideal : ΔG⁰ = - RT lnKc Kc = kes

  4. Hubunganantara K, KpdanKc K = Kγ . Kp Untuk gas ideal Kγ =1, sehingga K = Kp K = Kγ . Kc Kγ = Koefisienkeaktifan

  5. Contohsoal 1 Dari reaksi : ½ N2 + 3/2H2 ↔ NH3 . Pada 10 atmdan 450o : N2 = 25 %, H2 = 75 %, dan NH3 = 2,04 % denganKγ = 0,0995. Tentukan K danKppadakeadaaanini :

  6. Penyelesaian Diket : Kγ = 0,0995 T = 273 + 450 = 723 K Ptotal = 10 atm Ditanya : K danKp :…….. ? Jawab : Ptotal = PNH3 + ( PN2+H2) PN2+H2 = Ptotal - PNH3

  7. PNH3 = 2,04% x 10 atm = 0,204 atm PN2 = 25% x 9,796 atm = 2,449 atm PH2 = 75% x 9,796 atm = 7,347 atm Kp = = Kp = 6,55 .10-3 K = Kγ . Kp K = 0,995 x 0,00655 K= 6,52 . 10-3

  8. Contohsoal 2 N2O4 (g) ↔ 2NO2 (g) Pada 25oC, tekanan total 0,2118 atm, tekananparsial NO2adalah 0,1168 atm. Hitunglah ∆Gountuk N2O4(g) menjadi NO2 (g)

  9. Penyelesaian Diket : Ptotal = 0,2118 atm PNO2 = 0,1168 atm Dit : ∆Go = ? Jawab : PN2O4 = Ptotal – PNO2 = 0,2118 atm – 0,1168 atm = 0,0950 atm

  10. Kp = = = 0,144 ∆GO = - RT lnKp ∆GO = - 2,303 RT log Kp = - 2,303 (8,314 J. mol-1. K-1) (298 K) (-0.842) = 4,80 x 103 J.mol-1 = 4,80 kJ . mol-1

  11. Latihan • Persamaanreaksi : NO2(g) ↔ NO(g) + O2(g) .Pada 25oC, tekananparsial NO2, NO,dan O2berturut-turutadalah 0,3 atm; 0,2 atm; dan 0,3 atm. TentukanlahKpdan ∆Goreaksitersebut. • Dari reaksi : N2O4 (g) ↔ 2NO2 (g) ,padasuhutertentu, tekananparsial 2NO2sebesar 0,15 atm, dan Kγ = 0,998 dan K = 0,03. tentukantekanan total darireaksitersebut.

  12. Jawaban • 2 NO2(g) ↔ 2NO(g) + O2(g) Kp = = = 0,133 ∆GO = - RT lnKp = - (8,314 J. mol-1. K-1) (298 K) (-2,074 ) = 4998,2 J. mol-1 = 4,9982 kJ. mol-1

  13. N2O4 (g) ↔ 2NO2 (g) K = Kγ . Kp Kp = = = 0,03 Kp = P N2O4 = = = 0,75 Ptotal = P NO2 + P N2O4 = 0,15 + 0, 75 Ptotal = 0,9 atm

  14. TERIMAKASIH

More Related