130 likes | 268 Views
STATISTIK DAN PROBABILITAS pertemuan 7 & 8 Oleh : L1153 Halim Agung,S.Kom. Rata-rata ukur Untuk gejala-gejala yang sifatnya pertumbuhan atau kenaikan dengan syarat-syarat tertentu , seperti pertumbuhan bakteri , penduduk , dan kenaikan bunga .
E N D
STATISTIK DAN PROBABILITASpertemuan 7 & 8Oleh :L1153Halim Agung,S.Kom
Rata-rata ukur Untukgejala-gejala yang sifatnyapertumbuhanataukenaikandengansyarat-syarat tertentu, sepertipertumbuhanbakteri, penduduk, dankenaikanbunga. Rata-rata ukurdariserangkaiannilaiobservasi x1,x2,x3,…,xn. Dirumuskan atau Rata-rata ukurpertumbuhan
Rata-rata harmonis Rata-rata harmoniskadangseringdipakaipilihanapabila rata-rata kurangcocokbiladigunakan. Digunakanuntuk data yang yangsemuanilainyapositif. Untukmenentukanjumlahulanganefektifpadaprosedurpengujian DMRT danTukeypadarancanganpercobaan, misalnya rata-rata harmonic inidigunakan. Salahsatukelemahanpenggunaandari rata-rata harmonikiniadalah data yang digunakandalamperhitungantidakboleh nol. Olehkarenaitu, biasanya rata-rata harmonic inidigunakanuntuk data-data yang nilainyapositif. Contoh : Tigaorangmahasiswamembeliabugosokdipasar, mhs A membelidenganharga Rp300/bks, mhs B Rp100/bks, mhs C Rp50/bksberapaharga rata-rata abugosoktersebut
Latihan Tigaorangsiswa SMA membelialattulisdipasar, siswaA membelidenganhargaRp3.000/alat, siswaB Rp10.000/alat, siswaC Rp50.000/alat , berapaharga rata-rata alattulistersebut Diketahui data sebagaiberikut : 12 13 13 14 15 15 15 16 17 17 tentukan rata – rata ukurdanharmonikdari data diatas
BAB VI PengukuranDispersi Variansdan Standard deviasi Penggunaannilai-nilaiabsolutbagipengukurandispersitidak memungkinkanmanipulasimatematis Jikapenjumlahandilakukanterhadap yang telah dikuadratkanmakapengrata-rataanhasilpenjumlahandiatastidak samadengan 0 Deviasikuadrat rata-rata
Karl Pearson menamakanvarians Fisher danWilks Untuk n < 100 standard deviasisampel Untuk N > 100 standard deviasipopulasi
Untuk data yang telahdikelompokkan Metodesingkat
Pengukuranjarak (range) adalahpengukurannilaiterbesar – nilaiterkecil. Pengukurandeviasikuartil Pengukurandeviasi rata-rata atau
Tentukan standard deviasidari data 3 5 1 2 4 Untuk data tunggal
Latihan • Diketahui data sebagaiberikut : • 5 6 4 3 4 5 6 7 8 9 2 1 3 4 4 6 5 7 7 8 • Rata-rata • Q1 , Q2 , Q3 , D3dan P50 • Standard deviasi • Histogram dan poligon frekuensi • Kurva Ogivenya
Latihan • Tentukanlah : • Rata-rata • Standard deviasi • Histogram dan poligon frekuensi • Kurva Ogivenya