1 / 5

PROBLEME DE MATEMATIC Ă

PROBLEME DE MATEMATIC Ă. D. 1.Dacă ABCD este paralelogram si distanţa de la A la BD este egala cu 4 cm , distanţa de la C la BD este egala cu ? ABCD-paralelogram d(A,BD)=4 cm d(C,BD)=? ABCD-paralelogram= > <D1 <B2 I.U.

palani
Download Presentation

PROBLEME DE MATEMATIC Ă

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROBLEME DE MATEMATICĂ

  2. D 1.Dacă ABCD este paralelogram si distanţa de la A la BD este egala cu 4 cm , distanţa de la C la BD este egala cu? ABCD-paralelogram d(A,BD)=4 cm d(C,BD)=? ABCD-paralelogram=> <D1 <B2 I.U. <T=90 ;<Q=90 => ADT CQB=>d(C,BD)=d(A,BD) DA CB =>d(C,BD)=4cm C 1 T Q 2 A B

  3. C 2.Demostraţi că dacă ABCD este paralelogram si (AC este bisectoare , atunci ABCD este romb. ABCD-paralelogram (AC-bisectoare ABCD-romb ABCD-paralelogram [AO]-mediană în ABD AC BD={O} => (AC-bisectoare pentru => <BAD => ADB-isoscel=>[AB] [AD] ABCD-paralelogram => ABCD-romb B D O A

  4. 3.Demostraţi că dacă ABCD este trapez isoscel atunci, unchiurile de la bază sunt congruente. ABCD-trapez isoscel (AB DC) <A <B Fie T AB:CT AD AB DC=>AT DC =>ATCD-paralelogram AD CT =><A T1 SEC.CT ATCD-para.=>[AD] [CT] [AD] [BC] =>[CT] [BC]=> CTB-isoscel =><T1 <B ŞI <T1 <A=> < A <B D C A B T

  5. Realizat de : Petreuş Andreea

More Related