1 / 17

KEJADIAN dan PELUANG SUATU KEJADIAN

KEJADIAN dan PELUANG SUATU KEJADIAN. (Event and Its Probability). Kelas XI-IPA Semester Ganjil. Oleh Dra. Wahyu Dayati SMA Negeri 1 Yogyakarta. Ruang Sampel. (Sample Space). Himpunan semua hasil yang mungkin muncul dari percobaan disebut ruang sampel/ ruang contoh (sample space).

quasar
Download Presentation

KEJADIAN dan PELUANG SUATU KEJADIAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. KEJADIAN dan PELUANG SUATU KEJADIAN (Event and Its Probability) Kelas XI-IPA Semester Ganjil Oleh Dra. Wahyu Dayati SMA Negeri 1 Yogyakarta

  2. Ruang Sampel (Sample Space) Himpunan semua hasil yang mungkin muncul dari percobaan disebut ruang sampel/ ruang contoh (sample space). Himpunan semua hasil yang mungkin muncul pada percobaan melambungkan sekeping uang logam adalah : ANGKA atau GAMBAR dan ditulis : {A,G} Ruang sampel/ ruang contoh (sample space) titik sampel/titik contoh (sample point)

  3. Contoh : 1. Pada sebuah percobaan pelambungan sebuah dadu bersisi enam sebanyak satu kali, hasil yang mungkin muncul adalah munculnya sisi dadu bermata : 1,2,3,4,5 atau 6. Jadi ruang sampelnya : S = {1,2,3,4,5,6} 2. Seorang ibu yang melahirkan seorang bayi, jenis kelamin yang mungkin muncul adalah laki-laki atau perempuan. Ruang sampelnya : S = { L , P }

  4. Himpunan bagian dari ruang sampel disebut kejadian (event). Seorang ibu yang melahirkan seorang bayi, jenis kelamin yang mungkin muncul adalah laki-laki atau perempuan. Ruang sampelnya : S = { L , P }

  5. Bila suatu percobaan memiliki berbagai hasil kemungkinan, maka peluang (nilai kemungkinan) kejadian yang dikehendaki adalah : A adalah kejadian yang dimaksud P(A) adalah peluang kejadian A n(A) adalah banyaknya hasil yang dimaksud n(S) adalah banyaknya hasil yang mungkin

  6. Besar nilai peluang : 0  P(A)  1 P(A) = 0 Kejadian A mustahil terjadi P(A) = 1 Kejadian A pasti terjadi

  7. Contoh : 1.Peluang munculnya sisi dadu bermata 3 pada pelambungan dadu bersisi enam adalah : 2. Peluang ibu melahirkan seorang bayi perempuan adalah :

  8. 3. Peluang seorang ibu melahirkan bayi kembar keduanya laki-laki adalah : 4. Peluang seorang pria melahirkan adalah : P(A) = 0 (mustahil terjadi) 5. Peluang matahari terbit dari arah timur adalah : P(A) = 1 (pasti terjadi)

  9. Komplemensuatukejadian Komplemensuatukejadian A adalahkejadiantidakterjadinyakejadian A, ditulis : atau Ac atau A’ atau P(A) + P(Ac) = 1 P(Ac) = 1 – P(A)

  10. Contoh : 1. Pada pelambungan sekeping uang logam peluang munculnya : Gambar P(G) = ½ Bukan Gambar P(GC) = ½ P(G) + P(GC) = ½ + ½ = 1

  11. 2. Pada pelambungan sebuah dadu bersisi enam, peluang munculnya : mata dadu 2 P(2) = mata dadu bukan 2 P(2C) = + P(2) + P(2C) = = 1

  12. a). d). b). e). f). c).

  13. FrekwensiHarapan Frekwensiharapansuatukejadianpadapercobaan yang dilakukan n kali adalahhasil kali peluangkejadiantersebutdenganbanyaknyapercobaan. Fh(A) = n . P(A) Fh(A) : frekwensiharapankejadian A P(A) : peluangkejadian A n : banyaknyapercobaan

  14. Contoh : Sekepinguanglogamdilambungkan 10 kali. Berapafrekwensiharapanmunculnyasisiangka ? Jawab : Fh(A) = 10 . = 5 Artinya : frekwensiharapanmunculnyasisiangkadalam 10 kali lambunganadalah 5 kali.

More Related