1 / 52

Lógica

Lógica. Introdução. Origem da Lógica. Na Grécia Antiga, 342 a.C, em meio a embates filosóficos, Aristóteles sistematizou a Lógica com o intuito de verificar que argumentos eram válidos, elevando-a assim à categoria de ciência.

Download Presentation

Lógica

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lógica Introdução

  2. Origem da Lógica • Na Grécia Antiga, 342 a.C, em meio a embates filosóficos, Aristóteles sistematizou a Lógica com o intuito de verificar que argumentos eram válidos, elevando-a assim à categoria de ciência. • Em sua obra chamada Organum (“ferramenta para o correto pensar”), estabeleceu princípios tão gerais e sólidos que até hoje são considerados válidos.

  3. Origem • Aristóteles se preocupava com as formas de raciocínio que, a partir de conhecimentos considerados verdadeiros, permitiam obter novos conhecimentos. • A partir dos conhecimentos tidos como verdadeiros, caberia à Lógica a formulação de leis gerais de encadeamentos de conceitos e juízos que levariam à descoberta de novas verdades. Essa forma de encadeamento é chamada, em Lógica, de argumento.

  4. Argumento • Um argumento é uma seqüência de proposições (declarações/afirmações) na qual uma delas é a conclusão e as demais são premissas. • Uma proposição (ou declaração/afirmação) é uma sentença que pode ser verdadeira ou falsa • O objeto de estudo da lógica é determinar se a conclusão de um argumento é ou não uma consequência lógica das premissas.

  5. Validade de um Argumento • Em um argumento válido, as premissas são consideradas provas evidentes da verdade da conclusão, caso contrário não é válido. • Quando é válido, podemos dizer que a conclusão é uma consequência lógica das premissas, ou ainda que a conclusão é uma inferência decorrente das premissas.

  6. Validade de um Argumento • Inferência é a relação que permite passar das premissas para a conclusão (um “ encadeamento lógico”) • A palavra inferência vem do latim, Inferre, e significa “conduzir para”

  7. Validade de um Argumento • Exemplo 1: O argumento que segue é válido? Se eu ganhar na Loteria, serei rico. Eu ganhei na Loteria. Logo, sou rico. É Válido (a conclusão é uma decorrência lógica das duas premissas.)

  8. Validade de um Argumento • Exemplo 2: O argumento que segue é válido? Se eu ganhar na Loteria, serei rico Eu não ganhei na Loteria Logo, não sou rico  Não é Válido (a conclusão não é uma decorrência lógica das duas premissas.)

  9. Validade de um Argumento • A lógica se preocupa com o relacionamento entre as premissas e a conclusão, com a estrutura e a forma do raciocínio. A verdade do conteúdo de cada premissa e da conclusão é estudo das demais ciências. • A validade do argumento está diretamente ligada à forma pela qual ele se apresenta (Lógica Formal – estuda a forma dos argumentos).

  10. Dedução e Indução • Algumas das ferramentas que podem ser utilizadas pelo pensamento na busca de novos conhecimentos são a dedução e a indução, que dão origem a dois tipos de argumentos: Dedutivos e Indutivos.

  11. Argumentos Dedutivos • Pretendem que suas premissas forneçam uma prova conclusiva da veracidade da conclusão e podem ser: • Válidos: quando suas premissas, se verdadeiras, fornecem provas convincentes para a conclusão. Isto é, se as premissas forem verdadeiras, é impossível que a conclusão seja falsa; • Inválidos: não se verifica a característica anterior.

  12. Argumentos Dedutivos • Exemplos de argumentos dedutivos: • Os dois exemplos anteriores (um válido e outro inválido) • Outro exemplo: Todo homem é mortal. Sócrates é um homem. Logo, Sócrates é mortal. (Argumento Válido)

  13. Argumentos Indutivos • Não pretendem que suas premissas forneçam provas cabais da veracidade da conclusão, mas apenas que forneçam indicações dessa veracidade. (possibilidade, probabilidade) • Seguem do Raciocínio Indutivo, isto é, obtém conclusões baseada em observações/experiências. Enquanto que um Raciocínio Dedutivo exigi uma prova formal sobre a validade do argumento. • Os termos válidos e inválidos não se aplicam, são avaliados de acordo com a maior ou a menor probabilidade com que suas conclusões sejam estabelecidas.

  14. Argumentos Indutivos • Exemplo: Joguei uma pedra no lago, e ela afundou; Joguei outra pedra no lago e ela também afundou; Joguei mais uma pedra no lago, e também esta afundou; Logo, se eu jogar uma outra pedra no lago, ela vai afundar. (Argumento Indutivo)

  15. Argumentos Indutivos • A Lógica Formal só estuda Argumentos Dedutivos, verificando se são ou não válidos.

  16. Validade e Verdade • Verdade e Falsidade: são propriedades das proposições, nunca dos argumentos • Validade ou Invalidade: são proprie-dades dos argumentos dedutivos que dizem respeito a inferência ser ou não válida (raciocínio ser ou não correto)

  17. Validade e Verdade • Exemplo 1 Toda baleia é um mamífero (V) Todo mamífero tem pulmões (V) Logo, toda baleia tem pulmões (V)  Argumento válido e a conclusão verdadeira.

  18. Validade e Verdade • Exemplo 2 Toda aranha tem seis pernas (F) Todo ser de seis pernas tem asas (F) Logo, toda aranha tem asas (F)  Argumento válido e a conclusão falsa

  19. Validade e Verdade • Os conceitos de argumento válido ou inválido são independentes da verdade ou falsidade de suas premissas e conclusão. • Qualquer combinação de valores verdade entre as premissas e a conclusão é possível, exceto que nenhum argumento dedutivo válido tenha as premissas verdadeiras e a conclusão falsa. • Um argumento dedutivo no qual todas as premissas são verdadeiras é dito Argumento Correto, evidentemente sua conclusão também é verdadeira.

  20. Avaliação de um Argumento • Principal propósito de um argumento: • Demonstrar que uma conclusão é provável ou verdadeira. • Como avaliar que um argumento atinge ou não esse propósito? (Se ele é válido?)

  21. Avaliação de um Argumento • Critérios usados para avaliar um argumento: • Se todas as premissas são verdadeiras; • Se, dada a verdade das premissas, a conclusão é ao menos provável; • Se as premissas são relevantes para a conclusão;

  22. Validade e Probabilidade Indutiva.Argumentos Dedutivo e Argumentos Indutivos • Os argumentos podem ser classificados em duascategorias: • Argumento dedutivo • Argumento cuja conclusão deve ser verdadeira se suas premissas básicas forem verdadeiras. Em outras palavras - um argumento é dedutivo quando: “se as premissas forem verdadeiras é impossível a conclusão ser falsa”. • Argumento indutivo (ou dedutivo inválido) • Argumento cuja conclusão não é necessária, dadas suas premissas básicas.

  23. Validade e Probabilidade Indutiva.Argumentos Dedutivo e Argumentos Indutivos. Exemplos Dedutivo (“ Arg. Válido”) 1) . Todo homem é mortal . Sócrates é um homem ◊ Sócrates é mortal 2) . Freqüentemente quando chove fica nublado . Está chovendo ◊ Está nublado Indutivo (“Arg. Inválido”)

  24. Validade e Probabilidade Indutiva.Argumentos Dedutivo e Argumentos Indutivos. Exercícios • 1) . Não há registros de seres humanos com mais de 5 metros de altura. ◊ Nunca tivemos um ser humano com mais de 5 metros de altura. • 2) . Alguns porcos tem asas . Todas as coisas aladas gorjeiam ◊ Alguns porcos gorjeiam

  25. Validade e Probabilidade Indutiva.Argumentos Dedutivo e Argumentos Indutivos. Exercícios • 3) . Se houver uma guerra nuclear, a civilização será destruída. . Haverá uma guerra nuclear ◊A civilização será destruída por uma guerra nuclear. • 4) . O cloreto de potássio é, quimicamente, muito similar ao sal de cozinha (cloreto de sódio). ◊O Cloreto de potássio tem sabor igual ao do sal de cozinha.

  26. Argumento Dedutivo eArgumento Indutivo: Exercícios • Avalie os seguinte argumentos com relação aos critérios 1 e 2: • 1) . Todos tem um e um só pai biológico. . Os irmãos tem o mesmo pai biológico. . Ninguém é pai biológico de si mesmo. Não há pai biológico que seja também seu irmão.

  27. Argumento Dedutivo eArgumento Indutivo: Exercícios • 2) . Os visitantes da china quase nunca contraem malária no país. . José está visitando a China. José não contrairá malária na China. • 3) . Eu sonho com monstros. . Meu irmão sonha também com monstros.  Todas as pessoas sonham com monstros.

  28. Argumento Complexo Exercícios 3) "Todos os argumentos são ou indutivos ou dedutivos. O que você está lendo agora é um argumento. Este argumento não é indutivo. Este argumento é dedutivo.“ 4) "Não existe o maior número primo. Mas de todos os números primos sempre podemos imaginar que certamente existe um maior. Logo, existem números primos maiores do que qualquer um que possamos imaginar."

  29. ArgumentosQual o tipo de argumento que estudaremos? • A Lógica Formal estuda o argumento dedutivo no sentido tradicional • O objetivo da Lógica Formal é mostrar a validade de certas formas de argumento (estruturas). • O estudo das formas de argumento facilita a verificação da validade dos argumentos. • Na Lógica formal estudaremos formas básicas do raciocínio lógico de um ponto de vista sintático (manipulação de símbolos) e em seguida os princípios semânticos que justificam estas formas de raciocínio.

  30. Lógica Proposicional

  31. Lógica Proposicional • Até agora estudamos a Lógica de maneira informal. • A Lógica formal é o estudo de formas de argumento, isto é, regras de raciocínio comum em vários argumentos.

  32. Formas de Argumento Exemplos: 1. . Hoje é segunda-feira ou sexta-feira. . Hoje não é segunda-feira.  Hoje é sexta-feira. 2. . Rembrandt pintou a Mona Lisa ou Michelângelo a pintou. . Não foi Rembrandt quem a pintou.  Michelângelo pintou a Mona Lisa. 3. . Ele é menor de 18 anos ou é um irresponsável. . Ele não é menor de 18 anos.  Ele é um irresponsável.

  33. Formas de Argumento • Os 3 argumentos são da seguinte forma: . P ou Q . Não é o caso que é P  Q • As letras P e Q representam sentenças declarativas: (símbolos sentenciais). P pode representar: Hoje é segunda-feira. Q pode representar: Hoje é sexta-feira.

  34. Formas de Argumento • A lógica trata de formas de argumentos que consistem de letras sentenciais combinadas com as expressões: • Não é o caso quenegação • Econjunção • Oudisjunção • Se ... Entãoimplicação ou condicional • Se e somente sebi-implicação, equivalência ou bicondicional • Essas expressões são chamadas de operadores ou conectivos lógicos.

  35. Formas de Argumento Conectivo Não é o caso que • Essa expressão prefixa uma sentença para formar uma nova sentença, a negação da primeira. Exemplo:‘Não é o caso que ele é fumante‘ é a negação da sentença ‘Ele é fumante'. • Variações gramaticais dessa negação: ´Ele é não-fumante’, ´Ele não é fumante’ ´Ele não fuma’.

  36. Formas de Argumento Conectivo E • Uma composição constituindo-se de duas sentenças ligadas por 'e' chama-se conjunção. Exemplo: Chove e faz calor • Obs: em linguagem natural, ‘e’ às vezes sugere sequencia temporal Ele ganhou na loto e enriqueceu. • A conjunção também pode ser expressa por palavras como: 'mas', 'todavia', 'embora', 'contudo', ‘além do mais’, ‘no entanto’, ‘apesar disso’... Chove mas faz calor

  37. Formas de Argumento Conectivo Ou • Um enunciado composto consistindo de duas sentenças ligadas por 'ou' chama-se disjunção. Exemplo: Chove ou faz calor

  38. Formas de Argumento Conectivo Se ... então • Enunciados do tipo se... então ... chamam-se condicionais ou implicações . • O enunciado subseqüente ao 'se' chama-se o antecedente e o subseqüente ao 'então' chama-se o conseqüente. • Forma do condicional: Se antecedente então conseqüente Ex: Se sinto frio então visto o casaco

  39. Formas de Argumento Conectivo Se ... então • Uma implicação também pode ser expressa na ordem inversa. Visto o casaco se sentir frio mantém a semântica de Se sentir frio, visto o casaco Se sentir frio então visto o casaco

  40. Formas de Argumento Conectivo Se ... então • Variações gramaticais da implicação: • Se P então Q • P implicaem Q; P, logo Q • P só se Q; P somente se Q • P apenas se Q; P só quando Q • Q se P ; Q segue de P

  41. Formas de Argumento Conectivo Se e somente se • Os enunciados formados com a expressão ...se e somente se... são chamados bicondicionais ou equivalências . Exemplo: T é um triângulo se e somente se T é um polígono de três lados

  42. Formas de Argumento Conectivo Se e somente se • Um bicondicional pode ser considerado uma conjunção de dois condicionais: • 1. P se e somente se Q • 2. P se Q e P somente se Q • 3. Se Q então P e P somente se Q • 4. Se Q então P e Se P então Q que equivale a: • 5. Se P então Q e Se Q então P

  43. Formas de Argumento Formalização • Para facilitar o reconhecimento e comparação de formas de argumento, cada operador lógico é representado por um símbolo: • Não é o caso que: ~ ou ┐ • E: ^ ou & • Ou: v • Se ... então:  • Se e somente se: 

  44. Formalização: Linguagem da Lógica Proposicional • Alfabeto • Símbolos de pontuação: (,) • Símbolos de verdade: true, false • Símbolos proposicionais: P, Q, R, S, P1, Q1, P2, Q2... • Conectivos proposicionais: ,v,^,  , 

  45. Linguagem da Lógica Proposicional (cont.) • Fórmula • Todo símbolo de verdade ou proposicional é uma fórmula da Lógica Proposicional • Se H é fórmula então (H) também é • Se H e G são fórmulas, então (HvG), (H^G), (HG) e (HG) também são

  46. Exercícios: 1) Quais das expressões seguintes são fórmulas e quais não são: a)  R b) ( R) c) PQ d) (PQ) e) (P ^ Q)

  47. Linguagem da Lógica Proposicional (cont.) • Ordem de precedência •  • ,  • ^,v • Subfórmula: Se H é fórmula • H é uma subfórmula • Se H=(G), então G é subfórmula de H • Se H é do tipo (EvG), (E^G), (EG) ou (EG), então E e G são subfórmulas de H • Se G é subfórmula de H, então toda subfórmula de G também é subfórmula de H

  48. Formas de Argumento Formalização • Exemplo de formalização: Simbolize o argumento que segue e o represente na Forma Padrão. A proposta de auxílio está no correio. Se os árbitros a receberem até sexta-feira, eles a analisarão. Portanto, eles a analisarão porque se a proposta estiver no correio, eles a receberão até sexta-feira. (C, S, A)

  49. Solução: • A proposta de auxílio está no correio. Se os árbitros a receberem até sexta-feira, eles a analisarão. Portanto, eles a analisarão porque se a proposta estiver no correio, eles a receberão até sexta-feira. C: A proposta de auxílio está no correio. S: Os árbitros recebem a proposta até Sexta-feira. A: Os árbitros analisarão a proposta. . C . SA . CS {C, SA, CS} |-- A □ A

  50. Formas de Argumento Composição de conectivos • Nem ... Nem ... Nem José nem Maria estavam em casa J – José estava em casa M – Maria estava em casa ┐(J v M)

More Related