40 likes | 168 Views
Instituto Tecnológico De Villahermosa. Alumno: Lázaro García Hernández . . Análisis de redes. UNIDAD : 3 . ANALISIS DE REDES .
E N D
Instituto Tecnológico De Villahermosa Alumno: Lázaro García Hernández .
Análisis de redes. UNIDAD : 3
ANALISIS DE REDES El análisis de redes es el área encargada de analizar las redes mediante la teoría de redes (conocida más genéricamente como teoría de grafos). Las redes pueden ser de diversos tipos: social, transporte, eléctrica, biológica, internet, información, epidemiología, etc. Problema del camino mas corto Problema de trasporte Metodo de esquina noroeste Procedimiento de optimazion Los problemas conocidos como problemas del camino mínimo o camino más corto, tratan como su nombre indica de hallar la ruta mínima o más corta entre dos puntos. Este mínimo puede ser la distancia entre los puntos origen y destino o bien el tiempo transcurrido para trasladarse desde un punto a otro. Se aplica mucho para problemas de redes de comunicaciones. Este tipo de problemas pueden ser resueltos por el método del Simplex ESTE METODO ES GENERALMENTE CONSIDERADO POR SER EL METODO MAS FACIL AL DETERMINAR UNA SOLUCION BASICA FACTIBLE INICIAL. ESTE TAMBIEN CONSIDERADO POR SER EL MENOS PROBABLE PARA DAR UNA BUENA SOLUCION INICIAL DE BAJO COSTO PORQUE IGNORA LA MAGNITUD RELATIVA DE LOS COSTOS Cij. La operación eficiente de esos sistemas usualmente requiere un intento por optimizar varios índices que miden el desempeño del sistema. Algunas veces, esos índices son cuantificados y representados como variables algebraicas. Entonces se deben encontrar valores para esas variables, que maximicen la ganancia o beneficio del sistema, o bien minimicen los gastos o pérdidas Un problema particular que se resuelve con los procedimientos de la programación lineal es la situación conocida como problema del transporte o problema de la distribución de mercancías. Se trata de encontrar los caminos para trasladar mercancía, desde varias plantas (orígenes) a diferentes centros de almacenamiento (destinos), de manera que se minimice el costo del transporte.
Problema del árbol expandido mínimo Problema de flujo maximo Ruta critica (PERT – CPM) • Árbol: Es un grafo en el que existe un único nodo desde el que se puede acceder a todos los demás y cada nodo tiene un único predecesor, excepto el primero, que no tiene ninguno. También podemos definir un árbol como: • Un grafo conexo y sin ciclos. • Un grafo sin ciclos y con n-1 aristas, siendo n el número de vértices. • Grado de un nodo en un árbol es el número de subárboles de aquel nodo (en el ejemplo, el grado de v1 es 2 y de v21). • Denominamos hojas en un árbol a los nodos finales (v3, v5 y v6). • Un árbol de máximo alcance es aquel que obtenemos en un grafo conexo y sin ciclos. • Árbol de mínima expansión: Árbol de máximo alcance cuyo valor es mínimo, es decir, la suma de sus aristas es mínima. Nos permite conocer(calcular) la máxima cantidad de cualquier artículo o información que podemos transportar desde un origen hasta un destino. Pasos a seguir : Primer paso: Elegir una ruta arbitraria. Segundo paso: En dicha ruta escoger aquel ramal de menor flujo en ese sentido y transportar por esa ruta la cantidad escogida. Hacer esto repetitivamente hasta que no sea posible encontrar una ruta con capacidad de flujo. En otras palabras, el problema consiste en determinar la máxima capacidad de flujo que puede ingresar a través de la fuente y salir por el nodo de destino. El PERT/CPM fue diseñado para proporcionar diversos elementos útiles de información para los administradores del proyecto. Primero, el PERT/CPM expone la "ruta crítica" de un proyecto. Estas son las actividades que limitan la duración del proyecto. En otras palabras, para lograr que el proyecto se realice pronto, las actividades de la ruta crítica deben realizarse pronto