1 / 56

PARTNERS for Mathematics Learning Formative Assessment to Support Student Learning Module 6 K-2

1. PARTNERS for Mathematics Learning Formative Assessment to Support Student Learning Module 6 K-2 Decisions and Collaboration Around Assessment Partners for Mathematics Learning. 2. Overview of Modules.     . Module 1: Module 2: Module 3: Module 4: Module 5:.

reed
Download Presentation

PARTNERS for Mathematics Learning Formative Assessment to Support Student Learning Module 6 K-2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning FormativeAssessmenttoSupportStudentLearning Module6 K-2 Decisionsand Collaboration Around Assessment Partners forMathematicsLearning

  2. 2 OverviewofModules      Module1: Module2: Module3: Module4: Module5: LearningTargets QuestioningandTaskSelection InferencesandFeedback MakingStudentsActivePartners StudentSelf-Assessmentand Responsibility Module6:DecisionsandCollaboration AroundAssessment Partners forMathematicsLearning

  3. 3 Teaching-LearningCycle Clear Learning Targets Decisions About NextSteps Questioning& Instructional Tasks Collaboration Around Assessment Making Inferences &Giving Feedback Partners forMathematicsLearning StudentSelf- Assessment& Responsibility

  4. 4 CollaborationForTeaching-Learning Clear Learning Targets Decisions About NextSteps Questioning& Instructional Tasks Partners forMathematicsLearning Collaboration Around Assessment Making Inferences &Giving Feedback

  5. 5 GoalsforModule6 StructuresforTeacherCollaboration Designinginstructiontomeet theneedsofgroupsof students(differentiation) Usingspecificstrategies tomeetidentifiedneeds ofindividualchildren (interventions) Partners forMathematicsLearning

  6. 6 WhatAreTeacherCollaborations? Groupsofeducatorsworkingtogetherto improveteachingandlearning Gradelevelteachersplanninginstruction Departmentmeetingsforprogramplanning Teachersinvolvedinlessonstudies ProfessionalLearningCommunities(PLCs) Pairsareusuallyunstructured,butgroups usuallyhaveastructureforcollaboration Partners forMathematicsLearning

  7. 7 HowShouldTeachersCollaborate? Withagoalinmind-groupsaremost productivewhenthereisaclearpurpose tothemeeting Inacollegialandsupportiveenvironment- asafeplacetoshare Notforevaluationofoneanother,butfor thesakeofinquiry-thisistheformative aspectoftheteachingprofession Partners forMathematicsLearning

  8. 8 TeacherCollaborations Shouldhaveanagenda Includinggoalsforthemeeting Includingguidelinesforhow themeetingisrun Shouldberunbyafacilitator Implementsandassuresadherencetothe agenda;keepsthegroup“ontask” Managesdiscussionsanddebriefing Actsasa“neutralbody” Partners forMathematicsLearning

  9. 9 UtilizingColleagues’Ideas Collaborationscanbeformativewhenthey studyteaching: Aplanisdevelopedtowardachievingagoal Resultsofimplementingtheplanareshared Discussionoccursaboutwhatcanhappennext Collaborationshavepotentialtoincrease studentachievementwhenplanning, teachingstrategies,andstudentworkare thefocusofthemeetings Partners forMathematicsLearning

  10. 10 ProcessofFormativeCollaboration LookingatStudentWork Theteacherintroducesthework Participantsaskclarifyingquestions Everyoneexaminesthestudentwork providingcomments Theteacherreflectsandrespondstothe commentsasheorshechooses Thefacilitatorleadsadebriefingdiscussion aboutthesession Partners forMathematicsLearning

  11. 11 ProcessofFormativeCollaboration ACollegialEnvironment Answerthefollowingtwoquestions inyourjournals: Whattypeofmeetingstructurewouldbe importanttoensureyourparticipation? Whattypeofmeetingstructurewouldbe importanttoensuremeaningfuldialogue? Partners forMathematicsLearning

  12. 12 OperationalizingCollaboration TurntoyournotesfromModule1andthe PlanningearningGoalsandTargets handout Discusstheassessmenttaskscreatedfor selectedlearningtargets Selectonetaskthatallcollaborating teacherswouldgivetostudentsafteraunit ofinstructiononthetopic Partners forMathematicsLearning

  13. 13 OperationalizingCollaboration Discusshowwillyoutaketheseideasbackto yourschoolandfacilitatecollaborationamong teachersatK-2onthesetopics Makeaplanforcomingtogetherbygrade levelstoexaminestudentwork Whatdoyouexpecta“goodresponse”tobe? Whatmisconceptionsortypicalmistakeswill youlookfor? Ifstudentsdonot“master”thecontent,what mightbethedifferentiationorinterventions? Partners forMathematicsLearning

  14. 14 GoalsforModule6 StructuresforTeacherCollaboration Designinginstructiontomeet theneedsofgroupsof students(differentiation) Usingspecificstrategies tomeetidentifiedneeds ofindividualchildren (interventions) Partners forMathematicsLearning

  15. 15 InstructionalPlans Whenyoubegininstructiononaspecific learningtarget… Isthereawholeclasslessonthatwill benefitallgroups? Aretherestudentswhoneedspecific interventions? Howcanalessonbedifferentiatedtomeet theneedsofthesestudents? Partners forMathematicsLearning

  16. 16 ConversationAboutEquality Studentsareaskedtosolvethisproblem: 8+7=+5  Student:“15” Whatquestioncouldyouasknow thatisNOTdirective? Conversationadaptedfrom ThinkingMathematically Carpenteretal Partners forMathematicsLearning

  17. 17 ConversationAboutEquality Studentsareaskedtosolvethisproblem: 8+7=+5     Teacher:“Howdoyouknowitis15?” Helen:“BecauseIcounted” Teacher:“Whataboutthis5?” Helen:“It’sjustthere” Partners forMathematicsLearning

  18. 18 ConversationAboutEquality Studentsareaskedtosolvethisproblem: 8+7=+5  Nowwhat? Whatisthemathematicsthatthestudent ismissing? Howcouldyoufindoutifthisisa commonmisconception? Whatwouldyouaskifstudentsgave otherincorrectanswers? Partners forMathematicsLearning

  19. 19 WholeGroupLessons Differentiationwithinwholegrouplessons Providescommonexperiences Exposesstudentstoavarietyofthinking Cansupportindividualneedsandstrengths •Usethink/pair/sharestrategy •Allowwaittimebeforeresponses •Encourageresponsesfromseveralchildren •Connectcommentstopreviousspeakers Welearnmuchmoretogetherthanwecanalone Partners forMathematicsLearning

  20. 20 Strategies:FlexibleTasks&Groupings Flexiblegroupingsandassignmentsare hallmarksofadifferentiatedclassroom Differentiationprovidesopportunitiesthat supportstudentachievement Effectiveteachersfocusondifferentiation whenteachingcriticalconcepts Realistically,notalllessonsaredifferentiated Textbooksusuallyofferdifferentiatedtasks Ifdifferentiationisnewtoyou,startsmall Partners forMathematicsLearning

  21. 21 ExamplesofDifferentiationStrategies Pre-teaching/FrontLoading Discussingnewvocabularyforstudentswith languagegaps Pullagroupandpre-teach foundationalideas Unpackwordproblems Partners forMathematicsLearning

  22. 22 ExamplesofDifferentiationStrategies TieredAssignments Allowforavarietyofentrypoints Couldbe2-4different,butparalleltasks Technologydrivenassignments Teacherdirectsstudentstododifferentitems onsameworksheet Partners forMathematicsLearning

  23. 23 TieredAssignments Tieredactivities/lessons Aseriesofrelatedtasksofvaryingcomplexity Relatetoessentialunderstandingsandkey skillsthatstudentsneedtoacquire Assignedasalternativewaysofreachingthe samegoalstakingintoaccountindividual studentneeds Partners forMathematicsLearning

  24. 24 GettingStarted:TieredAssignments Choosethelearningtarget Formgroupsbasedonassessments Planameaningfulactivityandavariation ofthesameactivityforeachgroup dependingonthestudentneeds Partners forMathematicsLearning

  25. TieredAssignments 25 TheDoorbellRang NeedsInstruction Teacherrepeatsstoryas studentsactoutthestory Studentsthenhave12cookies toputintoequalgroupsoftheir choice ReadytoApply Teachergivesstudents18 cookies;theydeterminehow manydifferentwaystheycan bedividedequally Studentsrecordwhatequal groupsarepossible NeedsChallenge Studentsidentifyand record(inwords, picturesornumbers) whatnumbersof cookiescouldbe equallydividedinto 2,3,and4groups Studentsthen exploreifanyoftheir numberswouldwork forgroupsofsix Partners forMathematicsLearning

  26. 26 ExamplesofDifferentiationStrategies Choicesamongsimilartasks Multipletaskswithinacenter-student choosesactivitiesorteacherassignsthem Numberchoicesintasks Tic-Tac-Toeandotherdifferentiatedformats Signalsforassistance Usegroupbuddiesforassistance Stoplightidea:Unifixcubes,cups,cards Workingwithapartner Partners forMathematicsLearning

  27. DifferentiationStrategies27 NumberChoices Meghanfound(6,15,34)rocks Shehadaholeinherpocketandlost (3,9,21)ofherrocks Howmanydoesshehavenow? Advantages     Childrenchoosechallengebut“doable”numbers Multipleentrypoints Classdiscussionofthesameproblempossible Goodformulti-ageclassrooms Partners forMathematicsLearning

  28. DifferentiationStrategies 28 Tic-Tac-Toe Students choose Teacher plansfor practice Engaging Partners forMathematicsLearning

  29. 29 Cues:Red,Yellow,Green Asstudentswork,theyusethiscodetoself- assessandcommunicatewiththeteacher: Green:on“go”–doesnotneedhelp Yellow:“caution”–notsure,mayneedhelp •Otherstudentsmayhelpastudentshowingyellow Red:“stop”–stuck,don’tknowwhattodo next,needshelpimmediately •Teachergoestostudentsshowingred Partners forMathematicsLearning

  30. 30 DifferentiatedInstruction “DifferentiatedInstructionisanorganized, yetflexiblewayofproactivelyadjusting teachingandlearningtomeetstudents wheretheyareandhelpallstudents achievemaximumgrowthaslearners” CarolAnnTomlinson,UniversityofVirginia,1999(emphasisours) Partners forMathematicsLearning

  31. 31 GoalsforModule6 StructuresforTeacherCollaboration Designinginstructiontomeet theneedsofgroupsof students(differentiation) Usingspecificstrategies tomeetidentifiedneeds ofindividualchildren (interventions) Partners forMathematicsLearning

  32. 32 OurTask “…ourjobistochallengestudents’comfort levelandthentohelpthemfindtheirnext boundaries.…wetrytoidentifyevidencefor whatthechildknowsorhasmastered,areas whereinitialideasareformedbutadditional experiencewiththemisneeded,andthose conceptsandskillsthatrequirefurther scaffoldingoradditionalreadiness development.”-DaceyandLynch,MathforAll,2007 Partners forMathematicsLearning

  33. 33 KeepinMind… ZoneofProximalDevelopment Vygotsky(1978),Fleer(1992),Jacobs(2001) Student’s Current achievement http://www.learningandteaching.info/learning/constructivism.htm Partners forMathematicsLearning

  34. 34 Interventions… Identifystudentsatrisk Throughteacherobservationsandconversations Throughpretestsandstudentwork Implementhighlyeffectivestrategiesfocused specificallytoaddresstheindividual’sneed Shouldbeimplementedfaithfully Needon-goingprogressmonitoring Shouldbeadjustedthroughoutinstruction Partners forMathematicsLearning

  35. 35 Interventions… Mustbebasedondatathattellswhatthe individualstudentknowsordoesnotknow Likelytoaddressgapsinpriorknowledge Startwherethestudentisinhis/herknowledge and/orunderstanding Arenotmoreofthesame Newstrategies Newrepresentations Mini-lessonsonspecificcontent Partners forMathematicsLearning

  36. 36 Intervention… Requiresamodificationin Modesoftaskpresentation Instructionaltime Groupsize Amountandkindofcuesandprompts Amountofsupportwithintasks Amountofpracticerelevanttothemathematics Supportsstudents’increasedcontent knowledge Partners forMathematicsLearning

  37. 37 WhatIntervention? SecondgradestudentCallieconsistently countsallanddoesnotappeartorecall anysumsabove4+4 Theexpectationisthatshewillbedoing2- digitadditionwithrenamingwithinthenext months Herknowledgeofplacevalueis limitedtosaying34is“3tens and4ones” Partners forMathematicsLearning

  38. 38 InterventionsGoBeyondModifications Interventionsarenot…      Preferentialseating Shortenedassignments Parentcontacts Classroomobservations Doingmoreofthesame assignment Retention Partners forMathematicsLearning

  39. 39 Intervention:MakingtheTime Whatareshortblocksoftimesthatarenot well-usedduringtheschooldaythatmight beavailableforworkingwithindividuals? Whataresomewaysthatyouhavefound tofindtimetointervenewithchildren? Whataresomenewwaysthatyouwould liketotry? Whatgradeorschool-widechangeswould supportinterventions? Partners forMathematicsLearning

  40. 40 ConversationsAsAssessments Monitoringstudents’progressisespecially importantifstudentsarebehind Conversationswithstudentsaboutwhat theyarethinkinghelpkeepinterventions “movingforward” Classdiscussionsserveasconversationswhen welistencarefullytostudentsandaskprobing questionswhentheyshareanswers Itiseasiertoaddressproblemsifstudentsdo notspendtime“practicing”theirmisconceptions Partners forMathematicsLearning

  41. 41 Scaffolds Areanystructuresthatallowstudentstobe successfullearnersofmathematics Givechildrenopportunitiestoaccomplishtasks thattheywouldbeunabletocompletealone Include: Questionsthatleadstudentstobemore systematicorlogical Strategiesdevelopedexplicitlyforworkingwith newmathematicalcontentandactivities Newlearningconnectedtopriorknowledge, e.g.,KWLorKWHL Partners forMathematicsLearning

  42. 42 ScaffoldingLearning Caremustbetakennottoreplacestudent thinkingwithteacherthinking Partners forMathematicsLearning

  43. Examples 43 Scaffolding:Organizers Howareasquareandarectanglealike anddifferent? AlikeDifferentWordBank Partners forMathematicsLearning

  44. 44 Scaffolding:Organizers Partners forMathematicsLearning

  45. 45 Scaffolding:IdentifyProblemStructures Seanbiked12milesandstoppedforlunch.Thenhe bikedanother16milesbeforehereachedhome. HowmanymilesdidSeanbike? Seanbiked12milesandstoppedforlunch.Thenhe bikedsomemore.Bythetimehegothome,hehad biked28miles.Howmanymiles didhebikeafterlunch? Seanbikedforawhilebeforehestoppedforlunch.After lunchhebiked16milestoreachhome.Whenhegot therehehadbiked28miles.Howmany milesdidSeandrivebeforelunch? Partners forMathematicsLearning

  46. Examples 46 Scaffolding Problemtosolve Toddscored28pointsinthebasketballgame. Kerriscored13points. HowmanymorepointsdidToddscorethanKerri? Focusingattention:Setupproblemtorevealone sentenceatatime Teacherquestions:Tellmewhatishappeningin thestory.Whatdoyouknow?Whatareyou tryingtofindout? Modification:Changenumbersto8and3 Partners forMathematicsLearning

  47. 47 InterventionTarget Studentsoftenneedassistancewith multiplelearningtargets Teachersmustidentifyneeds,prioritize, andfocusonwhatisfoundational Beclearaboutpurposeofintervention “Scaffold”interventionsinlogicalorder Providemultipleopportunitiestolearnand practicecontentofintervention;buildreview Expectandrespectstudentthinking Monitorprogress Partners forMathematicsLearning

  48. 48 LookingataStudent’sWork Withyourpartner Reviewthestudentworksamples Identifymisconceptionsanderrors(also identifywhatthestudentknows) Prioritizehowyouwouldintervenewiththis student(focusingonmathematicscontent) Listspecificstrategies,activities,“steps” Partners forMathematicsLearning

  49. 49 ToEffectivelyMeetStudentNeeds Keepfocusonmathematicalconcepts, understanding,andsense-making Useon-goingassessmentstofindstudents whoneedmoresupportorextensions Keepgroupingsflexible Betheguideandfacilitator Continually(informally)assesstorecognize growthandachievementofgoals Partners forMathematicsLearning

  50. NCTMAssessmentResearchBrief Inyourownwordsdescribethefivemain pointsmadeinthebrief Inwhatwayscouldimplementationof theseideasimproveteachingandlearning inNorthCarolina? Whatchangesneedtotake placeinyourclassroom/school forthesestrategiestowork? Partners forMathematicsLearning

More Related