590 likes | 610 Views
Dive into statistical investigations, understand numerical data, and tackle fractions with practical application in math. Develop critical thinking and problem-solving skills through the PCAI model. Analyze, interpret, and communicate data effectively.
E N D
1 PARTNERS forMathematicsLearning GradeFour Module5 Partners forMathematicsLearning
2 DataEssentialStandards Lookatstatisticsandprobabilityacross thegrades Whatdoyounotice? Whatarethesimilaritiesanddifferences betweengrades3,4and5? Partners forMathematicsLearning
3 BigIdeas Datacanbeeithercategoricalornumerical Pose,Collect,Analyze,Interpret(PCAI)is amodelfortheprocessofstatistical investigations Differentrepresentationsandgraphs classifyandcommunicatedata Understandingbasicconceptsof probabilityallowsustomakemore accuratepredictions Partners forMathematicsLearning
5 NumericalData Valuesthatarenumberssuchascounts, measurements,andratings Representobjectsorindividualsby numbersassignedtocertainmeasurable propertiesExamples: Numberofchildreninfamilies Pulseratesoftopathletes Timeinminutesthatstudentsspend watchingtelevisioneachday Numberofpets Partners forMathematicsLearning
6 PCAIModel Partners forMathematicsLearning
7 PCAIStep1:PosetheQuestion Identifyaspecificquestionto exploreanddecidewhat datatocollecttoaddress thequestion Partners forMathematicsLearning
8 PCAIStep2:CollecttheData Studentsshould Collecttheirowndata Haveaplanfordatacollection Understandwheredatacomefrom Partners forMathematicsLearning
9 FlawsinDataCollection Whatkindsofthings needtobeconsidered whencollectingdata? Partners forMathematicsLearning
10 What’stheProblem? Billyconductsasurveytodetermine computerownershipoutsideacomputer repairshop Whymightthedatacollectedinthis samplebeinaccurate? Partners forMathematicsLearning
11 What’stheProblem? Keishasurveyseveryhouseina5block radiusofcityhallaskingifsubsidiesshould becontinuedfordairyfarmers Whymightthedatacollectedinthis samplebeinaccurate? Partners forMathematicsLearning
12 What’stheProblem? Alocalradiostation askslistenerstocallin andexpresstheirviews onexpandingthelocalairport Whymightthedatacollected inthissamplebeinaccurate? Partners forMathematicsLearning
13 What’stheProblem? Fromthepagesofhistory… Inthe1936presidentialcampaignbetween FDRandAlfredLandon,awell-respected publicationconductedasurveysendingten millionballotstoasamplepopulation selectedfromclubmemberships,telephone directories,andmagazinesubscriptions ItincorrectlydeterminedthatLandonwould win;FDRwonbyalandslide Partners forMathematicsLearning
14 ImplementingthePCAIModel “GettingtoKnowUs”projectwillinclude… Part1 Posingaquestionandcollectingdata Part2 Analyzingandinterpretthedata Part3 Presentation Partners forMathematicsLearning
15 FormingTeams Formteamsof3-4people Theteamscanbeallgrade4andallgrade 5orteamswhoarefromthesameLEA Partners forMathematicsLearning
16 ImplementingthePCAIModel “GettingtoKnowUs”-First… Generateatleastonenumericalquestion Formulateanhypothesis Preparetosampletwogroupsofpeople Partners forMathematicsLearning
17 ImplementingthePCAIModel “GettingtoKnowUs” Second… Collectthedata Posethequestiontotwodifferentpopulations Partners forMathematicsLearning
18 ImplementingthePCAIModel “GettingtoKnowUs” Maintainnotes abouttheprocess Bepreparedtoshare yourexperience Thinkaboutimplementing thiswithstudents
19 ImplementingthePCAIModel “GettingtoKnowUs” Atanothersessionwewill… Analyzethedata Interpretthedata Presentthedatatotheclass Partners forMathematicsLearning
20 ImplementingthePCAIModel “GettingtoKnowUs” Thingstokeepinmind… Havedatacollectedby… Anyquestions? Partners forMathematicsLearning
21 PARTNERS forMathematicsLearning Movinginto fractions Partners forMathematicsLearning
22 WhatAboutThoseFractions? BigFractionIdeas Fractionalpartsareequalsharesorequal-sized partsofawhole Fractionalpartshavespecialnamesthattellhow manyequalpartsareinthewhole Fractionsymbols(numeratoranddenominator) tellhowmanyandwhat Themorefractionalpartstomakeupthewhole, thesmallertheparts EquivalentFractions–differentfractionsexpress thesameamount Partners forMathematicsLearning
23 Fractions:WhatCanTheyMean? Values Fractionsarerationalnumbersandcanbe ordered Operators Findingafractionalpartofavalue,afraction asadivisionproblem Ratios Acomparisonoftwoquantities Partners forMathematicsLearning
24 FractionActions Compareandorderfractions FractionComputation Addition,Subtraction, Multiplication(fractionalpartsofwhole numbers) Fractionasdivision Mixednumbersandequivalentfractions Fractionsinproblemsolvingsituations Fractionsrelatedtodecimals Partners forMathematicsLearning
25 Fractions:TeachingandLearning Whatmakesfractionssohardfor students? Taught tooabstractlywithlimitedmodels Taughtwithrotememorizationof procedures Nottaughtinmeaningfulcontexts Moreattentiontoalgorithmsratherthanto developingnumbersenseandreasoning Partners forMathematicsLearning
26 FractionNumberSense:Representations Area/RegionModels LinearorMeasurementModels SetModels Symbols(withmeaning) 3 4 7 8 1 2 Partners forMathematicsLearning
27 2 3 howmany what FractionSymbols Thebottomnumbertellsuswhatisbeing counted–howmanypartswearetalkingabout Itcountsthepartsorsharesofawhole DenominatorisfromtheLatinwordfor“namer” Thetopnumberisthecountingnumber Ittellshowmanysharesorpartswearetalking about Itcountsthepartsorsharesbeingconsidered NumeratorisfromtheLatinwordfor“number” Partners forMathematicsLearning
28 Closeto… Nameafractioncloseto1butnotmorethan1 Nameafractionthatisevencloserto1thanthat Whydoyoubelieveitiscloser? Nameafractionthatisevencloserthanthe previousfraction Again… Partners forMathematicsLearning
29 FractionsonaNumberLine Numberlinesshowrelativemagnitudeof fractions Wherewouldyouplace1/3? 1 0abcde Whatfractionwouldbeatpointa? Howfarapartareaandb? Partners forMathematicsLearning
30 HowFull? Estimatehowfulleachcontaineris: Whatfractionofeachcontainerholdsliquid? Partners forMathematicsLearning
31 ComparingFractions Whichisgreater?ExplainandTest Partners forMathematicsLearning
32 FourthsonaGeoboard Partners forMathematicsLearning
33 FractionalParts–NotAlwaysCongruent Partners forMathematicsLearning
34 WhatPartIsRed? Whatpartisred? green?blue?yellow? Howdoyouknow? Whymightastudentsay 2/9ofthefigureisred? Ifyoudoublethisfigure, whatfractionisred? Partners forMathematicsLearning
35 FractionalPartsofaWhole Take24chips Dividethemintothirdsifyoucan Howmanyinonethird? …twothirds? Dividethemintofourthsifyoucan Howmanyinonefourth? …threefourths? Partners forMathematicsLearning
36 FractionalPartsofaWhole Take24chips Dividethemintofifthsifyoucan Whycan’tyoudividethemintofifths? Intowhatotherfractionalpartscan24 bedivided? Partners forMathematicsLearning
37 SetModel Caution:Whenpartitioningsets,children frequentlyconfusethenumberofcountersina sharewiththenumberofshares Example: Say:Divide12countersintofourths: (Thechildcorrectlymakesfourequalgroups.) Say:Showmethreefourths (Somechildrenwhocorrectlydividedthesetintofourequalgroups abovewillnowregroupthe12chipsintothreegroupsoffour.) Partners forMathematicsLearning
38 SetModel Say:"Showmethree-fourthsof12 Correctexample: Incorrectexample: Partners forMathematicsLearning
39 Fractions:ParttoWhole Makethewholelineifthisisonethird Makethewholeshapeifthisisthree fourths Partners forMathematicsLearning
40 Fractions:ParttoWhole Thewholeline... Thewholeshapemightlooklike... Partners forMathematicsLearning
41 Fractions:ParttoWhole Setmodel Ifthisistwofifthsofaset,makethewholeset Think:Howmanymoonsinonefifthofthe set? Partners forMathematicsLearning
42 Fractions:ParttoWhole Setmodel Thewholeset:fivefifths(fivegroupsof three) Partners forMathematicsLearning
43 FractionsGreaterthanOne Howmuchisshaded? Howcouldyounametheamountasa fraction? Asawholenumberandafraction? Partners forMathematicsLearning
44 FractionsGreaterthanOne Howmuchisshaded? Howcouldyouprovethis: 3 4 15 4 3 = Partners forMathematicsLearning
45 EquivalentFractions TheConcept: Twofractionsareequivalentiftheyare representationsforthesameamountor quantity–iftheyarethesamenumber TheAlgorithm: Multiplyordividethetopandbottom numbersbythesamenonzeronumber Intuitivemethodsarealwaysbestatfirst VandeWalleandLovin,TeachingStudent-CenteredMathematics,Grades3-5 Partners forMathematicsLearning
46 EquivalentFractions Allstudentsshouldeventuallybeabletowritean equivalentfractionforagivenfraction Atthesametime,therulesshouldneverbe taughtoruseduntilthestudentsunderstand whattheresultmeans Inaproblem-basedclassroom,studentscan developanunderstandingofequivalentfractions andalsodevelopfromthatunderstandinga conceptuallybasedalgorithm Partners forMathematicsLearning
47 EquivalentFractions DevelopingtheConcept Therateseries:aproblembasedapproach Partners forMathematicsLearning
48 EquivalentFractions DevelopingtheConcept TheRateSeries:AProblemBasedApproach 3x2=6 5x2=10 15x2=30 25x2=50 3x10=30 5x10=50 Partners forMathematicsLearning
49 ConstructingUnderstanding Developmentandgrowthoccurthroughan enormouslycomplicatedandcontinuous processofinteractionwiththeenvironment Throughactivitythepersondiscovers understandingbyre-inventingwhatheor shewantstounderstand Thisprocesstakestime -JeanPiaget Partners forMathematicsLearning
50 FractionComputation Aproblem-basednumbersenseapproach Beginwithsimpletasksincontexts Connectthemeaningoffractioncomputation withwhole-numbercomputation Developstrategiesusingestimationand informalmethods Usemodelstoexploreeachoftheoperations AdaptedfromVandeWalleandLovin,TeachingStudent-CenteredMathematics,2006 Partners forMathematicsLearning