1 / 59

Partners for Mathematics Learning

Dive into statistical investigations, understand numerical data, and tackle fractions with practical application in math. Develop critical thinking and problem-solving skills through the PCAI model. Analyze, interpret, and communicate data effectively.

yarger
Download Presentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning GradeFour Module5 Partners forMathematicsLearning

  2. 2 DataEssentialStandards Lookatstatisticsandprobabilityacross thegrades Whatdoyounotice? Whatarethesimilaritiesanddifferences betweengrades3,4and5? Partners forMathematicsLearning

  3. 3 BigIdeas Datacanbeeithercategoricalornumerical Pose,Collect,Analyze,Interpret(PCAI)is amodelfortheprocessofstatistical investigations Differentrepresentationsandgraphs classifyandcommunicatedata Understandingbasicconceptsof probabilityallowsustomakemore accuratepredictions Partners forMathematicsLearning

  4. 4

  5. 5 NumericalData Valuesthatarenumberssuchascounts, measurements,andratings Representobjectsorindividualsby numbersassignedtocertainmeasurable propertiesExamples: Numberofchildreninfamilies Pulseratesoftopathletes Timeinminutesthatstudentsspend watchingtelevisioneachday Numberofpets Partners forMathematicsLearning

  6. 6 PCAIModel Partners forMathematicsLearning

  7. 7 PCAIStep1:PosetheQuestion Identifyaspecificquestionto exploreanddecidewhat datatocollecttoaddress thequestion Partners forMathematicsLearning

  8. 8 PCAIStep2:CollecttheData Studentsshould Collecttheirowndata Haveaplanfordatacollection Understandwheredatacomefrom Partners forMathematicsLearning

  9. 9 FlawsinDataCollection Whatkindsofthings needtobeconsidered whencollectingdata? Partners forMathematicsLearning

  10. 10 What’stheProblem? Billyconductsasurveytodetermine computerownershipoutsideacomputer repairshop Whymightthedatacollectedinthis samplebeinaccurate? Partners forMathematicsLearning

  11. 11 What’stheProblem? Keishasurveyseveryhouseina5block radiusofcityhallaskingifsubsidiesshould becontinuedfordairyfarmers Whymightthedatacollectedinthis samplebeinaccurate? Partners forMathematicsLearning

  12. 12 What’stheProblem? Alocalradiostation askslistenerstocallin andexpresstheirviews onexpandingthelocalairport Whymightthedatacollected inthissamplebeinaccurate? Partners forMathematicsLearning

  13. 13 What’stheProblem? Fromthepagesofhistory… Inthe1936presidentialcampaignbetween FDRandAlfredLandon,awell-respected publicationconductedasurveysendingten millionballotstoasamplepopulation selectedfromclubmemberships,telephone directories,andmagazinesubscriptions ItincorrectlydeterminedthatLandonwould win;FDRwonbyalandslide Partners forMathematicsLearning

  14. 14 ImplementingthePCAIModel “GettingtoKnowUs”projectwillinclude… Part1 Posingaquestionandcollectingdata Part2 Analyzingandinterpretthedata Part3 Presentation Partners forMathematicsLearning

  15. 15 FormingTeams Formteamsof3-4people Theteamscanbeallgrade4andallgrade 5orteamswhoarefromthesameLEA Partners forMathematicsLearning

  16. 16 ImplementingthePCAIModel “GettingtoKnowUs”-First… Generateatleastonenumericalquestion Formulateanhypothesis Preparetosampletwogroupsofpeople Partners forMathematicsLearning

  17. 17 ImplementingthePCAIModel “GettingtoKnowUs” Second… Collectthedata Posethequestiontotwodifferentpopulations Partners forMathematicsLearning

  18. 18 ImplementingthePCAIModel “GettingtoKnowUs” Maintainnotes abouttheprocess Bepreparedtoshare yourexperience Thinkaboutimplementing thiswithstudents

  19. 19 ImplementingthePCAIModel “GettingtoKnowUs” Atanothersessionwewill… Analyzethedata Interpretthedata Presentthedatatotheclass Partners forMathematicsLearning

  20. 20 ImplementingthePCAIModel “GettingtoKnowUs” Thingstokeepinmind… Havedatacollectedby… Anyquestions? Partners forMathematicsLearning

  21. 21 PARTNERS forMathematicsLearning Movinginto fractions Partners forMathematicsLearning

  22. 22 WhatAboutThoseFractions? BigFractionIdeas Fractionalpartsareequalsharesorequal-sized partsofawhole Fractionalpartshavespecialnamesthattellhow manyequalpartsareinthewhole Fractionsymbols(numeratoranddenominator) tellhowmanyandwhat Themorefractionalpartstomakeupthewhole, thesmallertheparts EquivalentFractions–differentfractionsexpress thesameamount Partners forMathematicsLearning

  23. 23 Fractions:WhatCanTheyMean? Values Fractionsarerationalnumbersandcanbe ordered Operators Findingafractionalpartofavalue,afraction asadivisionproblem Ratios Acomparisonoftwoquantities Partners forMathematicsLearning

  24. 24 FractionActions Compareandorderfractions FractionComputation Addition,Subtraction, Multiplication(fractionalpartsofwhole numbers)     Fractionasdivision Mixednumbersandequivalentfractions Fractionsinproblemsolvingsituations Fractionsrelatedtodecimals Partners forMathematicsLearning

  25. 25 Fractions:TeachingandLearning Whatmakesfractionssohardfor students?  Taught tooabstractlywithlimitedmodels Taughtwithrotememorizationof procedures Nottaughtinmeaningfulcontexts Moreattentiontoalgorithmsratherthanto developingnumbersenseandreasoning Partners forMathematicsLearning

  26. 26 FractionNumberSense:Representations Area/RegionModels LinearorMeasurementModels SetModels Symbols(withmeaning) 3 4 7 8 1 2 Partners forMathematicsLearning

  27. 27 2 3 howmany what FractionSymbols Thebottomnumbertellsuswhatisbeing counted–howmanypartswearetalkingabout Itcountsthepartsorsharesofawhole DenominatorisfromtheLatinwordfor“namer” Thetopnumberisthecountingnumber Ittellshowmanysharesorpartswearetalking about Itcountsthepartsorsharesbeingconsidered NumeratorisfromtheLatinwordfor“number” Partners forMathematicsLearning

  28. 28 Closeto… Nameafractioncloseto1butnotmorethan1 Nameafractionthatisevencloserto1thanthat Whydoyoubelieveitiscloser? Nameafractionthatisevencloserthanthe previousfraction Again… Partners forMathematicsLearning

  29. 29 FractionsonaNumberLine Numberlinesshowrelativemagnitudeof fractions Wherewouldyouplace1/3? 1 0abcde Whatfractionwouldbeatpointa? Howfarapartareaandb? Partners forMathematicsLearning

  30. 30 HowFull? Estimatehowfulleachcontaineris: Whatfractionofeachcontainerholdsliquid? Partners forMathematicsLearning

  31. 31 ComparingFractions Whichisgreater?ExplainandTest Partners forMathematicsLearning

  32. 32 FourthsonaGeoboard Partners forMathematicsLearning

  33. 33 FractionalParts–NotAlwaysCongruent Partners forMathematicsLearning

  34. 34 WhatPartIsRed? Whatpartisred? green?blue?yellow? Howdoyouknow? Whymightastudentsay 2/9ofthefigureisred? Ifyoudoublethisfigure, whatfractionisred? Partners forMathematicsLearning

  35. 35 FractionalPartsofaWhole Take24chips Dividethemintothirdsifyoucan Howmanyinonethird? …twothirds? Dividethemintofourthsifyoucan Howmanyinonefourth? …threefourths? Partners forMathematicsLearning

  36. 36 FractionalPartsofaWhole Take24chips Dividethemintofifthsifyoucan Whycan’tyoudividethemintofifths? Intowhatotherfractionalpartscan24 bedivided? Partners forMathematicsLearning

  37. 37 SetModel Caution:Whenpartitioningsets,children frequentlyconfusethenumberofcountersina sharewiththenumberofshares Example: Say:Divide12countersintofourths: (Thechildcorrectlymakesfourequalgroups.) Say:Showmethreefourths (Somechildrenwhocorrectlydividedthesetintofourequalgroups abovewillnowregroupthe12chipsintothreegroupsoffour.) Partners forMathematicsLearning

  38. 38 SetModel Say:"Showmethree-fourthsof12 Correctexample: Incorrectexample: Partners forMathematicsLearning

  39. 39 Fractions:ParttoWhole Makethewholelineifthisisonethird Makethewholeshapeifthisisthree fourths Partners forMathematicsLearning

  40. 40 Fractions:ParttoWhole Thewholeline... Thewholeshapemightlooklike... Partners forMathematicsLearning

  41. 41 Fractions:ParttoWhole Setmodel Ifthisistwofifthsofaset,makethewholeset Think:Howmanymoonsinonefifthofthe set? Partners forMathematicsLearning

  42. 42 Fractions:ParttoWhole Setmodel Thewholeset:fivefifths(fivegroupsof three) Partners forMathematicsLearning

  43. 43 FractionsGreaterthanOne Howmuchisshaded? Howcouldyounametheamountasa fraction? Asawholenumberandafraction? Partners forMathematicsLearning

  44. 44 FractionsGreaterthanOne Howmuchisshaded? Howcouldyouprovethis: 3 4 15 4 3 = Partners forMathematicsLearning

  45. 45 EquivalentFractions TheConcept: Twofractionsareequivalentiftheyare representationsforthesameamountor quantity–iftheyarethesamenumber TheAlgorithm: Multiplyordividethetopandbottom numbersbythesamenonzeronumber Intuitivemethodsarealwaysbestatfirst VandeWalleandLovin,TeachingStudent-CenteredMathematics,Grades3-5 Partners forMathematicsLearning

  46. 46 EquivalentFractions Allstudentsshouldeventuallybeabletowritean equivalentfractionforagivenfraction Atthesametime,therulesshouldneverbe taughtoruseduntilthestudentsunderstand whattheresultmeans Inaproblem-basedclassroom,studentscan developanunderstandingofequivalentfractions andalsodevelopfromthatunderstandinga conceptuallybasedalgorithm Partners forMathematicsLearning

  47. 47 EquivalentFractions DevelopingtheConcept Therateseries:aproblembasedapproach Partners forMathematicsLearning

  48. 48 EquivalentFractions DevelopingtheConcept TheRateSeries:AProblemBasedApproach 3x2=6 5x2=10 15x2=30 25x2=50 3x10=30 5x10=50 Partners forMathematicsLearning

  49. 49 ConstructingUnderstanding Developmentandgrowthoccurthroughan enormouslycomplicatedandcontinuous processofinteractionwiththeenvironment Throughactivitythepersondiscovers understandingbyre-inventingwhatheor shewantstounderstand Thisprocesstakestime -JeanPiaget Partners forMathematicsLearning

  50. 50 FractionComputation Aproblem-basednumbersenseapproach Beginwithsimpletasksincontexts Connectthemeaningoffractioncomputation withwhole-numbercomputation Developstrategiesusingestimationand informalmethods Usemodelstoexploreeachoftheoperations AdaptedfromVandeWalleandLovin,TeachingStudent-CenteredMathematics,2006 Partners forMathematicsLearning

More Related