1 / 63

Partners for Mathematics Learning

Discover the importance of number sense in problem-solving and explore foundational ideas for effective mathematics learning. Learn concepts, acquire skills, and empower students with confidence in math.

warrenb
Download Presentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning GradeFive Module1 Partners forMathematicsLearning

  2. 2 VideoOverview Welcometothefirstofsixmodulesof Partnersprofessionaldevelopment forteachersoffifthgrade Partners forMathematicsLearning

  3. 3 NCEssentialStandards TakeabrieflookatthenewNCEssential Standards: What’snewinNumberandOperations? What’snewinAlgebra? Whatlooksfamiliar? Partners forMathematicsLearning

  4. 4 Partners2009:5thGradeModules 1NumberandOperations:NumberSense andMultiplication 2NumberandOperations:Divisionand Fractions 3Measurement 4Geometry 5Data;NumberandOperations:Decimals 6Statistics(Data);ProcessStandards Partners forMathematicsLearning

  5. 5 MathematicsLearning… Mathematicslearningisaboutmaking senseofmathematics Mathematicslearningisaboutacquiring skillsandinsightstosolveproblems NCTMPrinciplesandStandards2000 Philosophy Partners forMathematicsLearning

  6. 6 InElementaryClassrooms… Whatshouldchildrenbelearning? Bigideasofmathematics Contentoftheessentialstandards Conceptsandprocedures Howdochildrenlearn? Throughprocessesofreasoning, communicating,representingideas,making connections,solvingroutineandnon-routine problems Partners forMathematicsLearning

  7. 7 DevelopingMathematicalPower Whatdoteachersneedtodoto… Empowerstudentsto… Understandmathematics Usemathematics Enjoymathematics Haveconfidenceinthemselvesas mathematicsstudents Designinstructionaroundproblemsolving, reasoning,andsense-making Partners forMathematicsLearning

  8. 8 ProblemSolving Problemsolvingmeansengaginginatask forwhichthesolutionorsolutionpathare notknowninadvance Theprocessofproblemsolvingshould permeatetheentireprogramandprovide thecontextinwhichskillsandconcepts canbelearned NCTMStandards1989,2000 Partners forMathematicsLearning

  9. 9 ProblemSolving Solvingproblemsisnotonlyagoalof learningmathematicsbutalsoamajor meansoflearningmathematics Chooseproblemsthatengagestudents Createenvironmentthatencourages exploration,risk-taking,sharing,and questioning–developingconfidencein studentsengagedinproblem-solvingactivities NCTMPrinciplesandStandards2000 Partners forMathematicsLearning

  10. 10 Numbersense develops… Overtime Throughmany experiences Alongside operationsense Number“glues”all strandstogether Numbersenseis foundationalto successfulproblem solving Partners forMathematicsLearning FoundationalIdeas

  11. 11 ChallengesUsingNumberSense Findwaystowritethenumbers1–10 usingexactlyfour3’s Findwaystowritethenumbers11–20 usingexactlyfive2’s Writethenumbers0–50usingexactly five4’sandanysymbols: +,!×,÷,(),! Partners forMathematicsLearning

  12. 12 NumberSenseIs... Aperson’sunderstandingofnumberconcepts, operations,applicationsofnumbers&operations Theabilitytousethisunderstandinginflexible waystomakedecisionsandtodevelopuseful strategiesforusingnumbersandoperations Theexpectationthatnumbersareusefulandthat mathematicsislogicalandmakessense Theabilitytousenumbersandapplicationsof numberstocommunicate,process,andinterpret information -fromMcIntosh,Reys,Reys,&Hope,NumberSENSE,Grades4-6 Partners forMathematicsLearning

  13. 13 StudentswithNumberSense… Havewell-understoodnumbermeanings Understandmultipleinterpretationsand representationsofnumbers Recognizetherelativeandabsolute magnitudeofnumbers Appreciatetheeffectofoperationson numbers Havedevelopedasystemofpersonal benchmarks NCTMCurriculumandEvaluationStandards,1989 Partners forMathematicsLearning

  14. 14 NumberRelationshipsCanBe… Comparedasgreaterthan, lessthan,orequal Decomposedintoa combinationofothernumbers Composedwithothernumbers tonameanewnumber Namedindifferentways Categorizedasmultiples, factors,powers,roots Partners forMathematicsLearning

  15. 15 NumbersintheRealWorld Lookinnewspapers,magazines, billboards,andothersourcesfornumbers inthesecategories: Anumberinthemillions Aprimenumber Afractiongreaterthan½ Adecimalgreaterthan.75 Thefactorsof48 Amixednumber Partners forMathematicsLearning

  16. 16 NumberLines 987 992 n 1017 Whatarethemissingvalues? Whatnumberisn? Howmightyoulabelthenumberline? Partners forMathematicsLearning

  17. 17 PatternsinMultiples Noticeallthemultiplesofagiven numberonthe“PatternsinMultiples”Chart Comparethepatterneachnumbermakes withothernumberpatterns Whatarethesimilarities?Whatarethe differences? Whatdothesepatternstellyouaboutthe relationshipsofthesenumbers?

  18. 18 DiscoveringPrimesandSquares Asatablegroup,cutoutallrectangular arraysthatcanbemadewitheachofthe numbers2through20(a3x4arrayisthe sameasa4x3array) Organizearraysandlistthedimensionsof thearraysyoumadeforeachnumber Whatdoyounoticeaboutthenumberof arraysthatcanbemadeforeachnumber? Partners forMathematicsLearning

  19. 19 DiscoveringPrimesandSquares Aretherenumbersforwhichonlyone arraycanbemade? Whatarethesenumberscalled? Whatkindsofnumbershavemore thantwofactors? Partners forMathematicsLearning

  20. 20 DiscoveringPrimesandSquares Forwhichofthenumbersdidyouhavean oddnumberoffactors? Howisthesetofarraysforthesenumbers differentfromothernumbers? Partners forMathematicsLearning

  21. 21 Sample Classroom Questions ExploringFactors Whatisthesmallestpossible numberthathasexactly9factors? Whatisthesmallestcomposite squarenumber? Findanumberwithmorethan9factors Rollcomeinpacksof6;hotdogscomein packsof8.Howmanypacksofeach shouldwebuytouseeverything? Partners forMathematicsLearning

  22. 22 WhatThenIsPrimeFactorization? Factoringanumberusingonlyprimefactors 180=15x12 3x5x3x2x2=180 Identifyingalloftheprimenumbersthat, whenmultipliedtogether,equalthevalue 30=3x2x5 18=3x3x2 or 18=32x2 Partners forMathematicsLearning

  23. 23 WhatThenIsPrimeFactorization? Create2different“strings”offactorsfor eachproductbelow 24x15=360 21x12=252 48x60=2,880 Whatisthelongest“string”youcanfind? Whymaythenumber1notbeusedasa factor? Partners forMathematicsLearning

  24. 24 WhatThenIsPrimeFactorization? Didyoufindthese“strings”? 24x15=360 •2x2x2x3x3x5=360 21x12=252 •3x7x2x2x3=252 48x60=2,880 •2x2x2x2x3x2x3x2x5 Whatwasyourstrategy? Partners forMathematicsLearning

  25. 25 WhatThenIsPrimeFactorization? Factoringwith“trees”buildsonstudents’ knowledgeofnumberfactsanddivisibility 24 24 3 x 8 2x4 6 x 4 2x3x2x2 3 x 3 x 2x2x2 Determine:Afifthgradeexplorationor essentialstandard? Partners forMathematicsLearning

  26. 26 NumericalGuessMyRule Whatarethelabels? Partners forMathematicsLearning

  27. 27 NumericalGuessMyRule Whyaretheselabelsreasonable? Partners forMathematicsLearning

  28. 28 NumericalGuessMyRule FindtheRules Partners forMathematicsLearning

  29. 29 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Could itbe 60? Partners forMathematicsLearning

  30. 30 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Nope. Itcould notbe 60! Partners forMathematicsLearning

  31. 31 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Itislessthan80 Partners forMathematicsLearning Let me think

  32. 32 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Itislessthan80 Partners forMathematicsLearning

  33. 33 MysteryNumbers Ifyouadd5tomymysterynumberyouwill getthesameresultaswhenyousubtract mymysterynumberfrom89 Whatismynumber? = + ? - ? Partners forMathematicsLearning

  34. 34 MysteryNumbers Writethemysterynumbercluesymbolically: n+5=89–n Trythese: 23+a=39–a 8xb=54–b 40–c=c+14 Partners forMathematicsLearning

  35. 35 ComputationalFluency “Bytheendof[grade5]studentsshouldbe computingfluentlywithwholenumbers…. Studentsexhibitcomputationalfluencywhen theydemonstrateflexibilityinthe computationalmethodstheychoose, understandandcanexplainthesemethods, andproduceaccurateanswersefficiently. Thecomputationalmethodsthatastudentuses shouldbebasedonmathematicalideasthatthe studentunderstandswell.” FromPrinciplesandStandardsforSchoolMathematics,NCTM,2000,page152,emphasisadded Partners forMathematicsLearning

  36. 36 ComputationalFluency “Flexibilitywithavarietyofcomputational strategiesisanimportanttoolforsuccessfuldaily living.Itistimetobroadenourperspectiveof whatitmeanstocompute.” “Nostudentshouldbepermittedtouseany strategywithoutunderstandingit.” JohnVandeWalle,TeachingStudent-CenteredMathematics,Grades3-5,pages101-102 Partners forMathematicsLearning

  37. 37 ComputationalFluency Whatarewetryingtoachievewhen weteacharithmetictoday? RoteCalculatorsor ProblemSolverswhoexhibitarithmetic fluency* *Fluencymeanscomputing accurately,efficiently,andflexibly Partners forMathematicsLearning

  38. 38 ResearchIsShowing… Teachingtraditionalalgorithmstooearly impedesthedevelopmentofnumbersense Studentsnottaughttraditionalalgorithms duringthefirst5yearsofschool(ages5-11) Acquiredanddevelopedgoodnumbersense, and Evenaftertheyweretaughtstandard algorithms,theypreferredtheirownmethods FromresearchofAlistairMcIntosh,UniversityofTasmania,andothers,reportedatICME-10,Copenagen,2004 Partners forMathematicsLearning

  39. 39 ResearchIsShowing… Ratherthanalgorithms,thestudents… Performedmentalcalculations Explainedtheirownstrategiesfor computations,and Intheprocess,developednumbersense FromresearchofAlistairMcIntosh,UniversityofTasmania,Australia,andothers,reportedatICME-10,2004 Partners forMathematicsLearning

  40. 40 ResearchIsShowing… Atleastshortterm,thereisevidencethata strategiesapproachtomentalcomputation Hasapositiveeffectonstudents’competence, confidenceandenjoyment Isaviablealternativeclassroomapproachto teachingmentalcomputation Isconsonantwithaconstructivistapproachto mathematicsteaching Improvesstudents’abilitytodiscuss,explain,and justifyorally FromresearchofAlistairMcIntosh,UniversityofTasmania,andothers,reportedatICME-10,2004 Partners forMathematicsLearning

  41. 41 ResearchIsShowing… Anemphasisontraditionalalgorithmsandon mentalmethodsofspeedandaccuracy (ratherthanstrategies) Doesnotleadtonumbersense Providesaninefficientmethodofimproving thementalcomputationskillsespeciallyofless confident/competentstudents Inhibitsflexiblethinking FromresearchofAlistairMcIntosh,UniversityofTasmania, andothers,reportedatICME-10,2004 Partners forMathematicsLearning

  42. 42 WhatAreOurGoalsandChallenges? “Theultimatepurposeofarithmetic instructionisthedevelopmentoftheability toTHINKinquantitativesituations” WilliamBrownell,1934 Partners forMathematicsLearning

  43. 43 AlternativeStrategies Student-developedstrategieshave advantagesforchildrenovertraditional algorithms Theyarenumberorientedratherthandigit oriented Theyareleft-handedratherthanright-handed Theyareflexibleratherthanrigid Theyoftenemployoperationproperties adaptedfromJohnVanDeWalle,TeachingStudent-CenteredMathematics,Grades3-5,1997 Partners forMathematicsLearning

  44. 44 Digitvs.NumberOrientation Traditionalapproachesemphasizeplace valueoftenmodeledonBase10materials withstandardverticalalgorithms Ratherthanbeingdigitoriented,anumber senseapproachorinventedstrategies approachisnumberoriented–not separatingadigitfromitsvaluewithin thenumber Partners forMathematicsLearning

  45. 45 ResearchSays… Childrenneedinformal,reliable,butnot necessarilystandard,methodsofcomputing Childrendon'tspontaneouslydevelopthe standardalgorithms Childrenneedthechoicenottousethealgorithms -AlistairMcIntosh,UniversityofTanzania,emeritus,atICME-10,2004 Ifyouuseit,youmustunderstandwhyitworks andbeabletoexplainit -JohnVandeWalle,TeachingStudent-CenteredMathematics,Grades3-5,2006 Partners forMathematicsLearning

  46. 46 HigherExpectations-NotLower Thispositiondoesnotmeanlower expectationsforcomputationalexpertise Rather,wehavehigherexpectationsfor accuratecomputingwithunderstanding Timeinvestedinunderstandingresultsin long-termlearning Partners forMathematicsLearning

  47. 47 Multiplication:MentalStrategies Withoutusingthetraditionalalgorithm,how wouldyousolvethese? 14x15 325x4 333x20 Partners forMathematicsLearning

  48. 48 WhatAretheMisunderstandings? Partners forMathematicsLearning

  49. 49 EstimatingSolutions Whatisareasonableestimatefor 35x48? Howdidyoumakeyourestimate? Whywouldanestimatebehelpfulwhen computing? Partners forMathematicsLearning

  50. 50 HowDoTheseWork?

More Related