630 likes | 644 Views
Discover the importance of number sense in problem-solving and explore foundational ideas for effective mathematics learning. Learn concepts, acquire skills, and empower students with confidence in math.
E N D
1 PARTNERS forMathematicsLearning GradeFive Module1 Partners forMathematicsLearning
2 VideoOverview Welcometothefirstofsixmodulesof Partnersprofessionaldevelopment forteachersoffifthgrade Partners forMathematicsLearning
3 NCEssentialStandards TakeabrieflookatthenewNCEssential Standards: What’snewinNumberandOperations? What’snewinAlgebra? Whatlooksfamiliar? Partners forMathematicsLearning
4 Partners2009:5thGradeModules 1NumberandOperations:NumberSense andMultiplication 2NumberandOperations:Divisionand Fractions 3Measurement 4Geometry 5Data;NumberandOperations:Decimals 6Statistics(Data);ProcessStandards Partners forMathematicsLearning
5 MathematicsLearning… Mathematicslearningisaboutmaking senseofmathematics Mathematicslearningisaboutacquiring skillsandinsightstosolveproblems NCTMPrinciplesandStandards2000 Philosophy Partners forMathematicsLearning
6 InElementaryClassrooms… Whatshouldchildrenbelearning? Bigideasofmathematics Contentoftheessentialstandards Conceptsandprocedures Howdochildrenlearn? Throughprocessesofreasoning, communicating,representingideas,making connections,solvingroutineandnon-routine problems Partners forMathematicsLearning
7 DevelopingMathematicalPower Whatdoteachersneedtodoto… Empowerstudentsto… Understandmathematics Usemathematics Enjoymathematics Haveconfidenceinthemselvesas mathematicsstudents Designinstructionaroundproblemsolving, reasoning,andsense-making Partners forMathematicsLearning
8 ProblemSolving Problemsolvingmeansengaginginatask forwhichthesolutionorsolutionpathare notknowninadvance Theprocessofproblemsolvingshould permeatetheentireprogramandprovide thecontextinwhichskillsandconcepts canbelearned NCTMStandards1989,2000 Partners forMathematicsLearning
9 ProblemSolving Solvingproblemsisnotonlyagoalof learningmathematicsbutalsoamajor meansoflearningmathematics Chooseproblemsthatengagestudents Createenvironmentthatencourages exploration,risk-taking,sharing,and questioning–developingconfidencein studentsengagedinproblem-solvingactivities NCTMPrinciplesandStandards2000 Partners forMathematicsLearning
10 Numbersense develops… Overtime Throughmany experiences Alongside operationsense Number“glues”all strandstogether Numbersenseis foundationalto successfulproblem solving Partners forMathematicsLearning FoundationalIdeas
11 ChallengesUsingNumberSense Findwaystowritethenumbers1–10 usingexactlyfour3’s Findwaystowritethenumbers11–20 usingexactlyfive2’s Writethenumbers0–50usingexactly five4’sandanysymbols: +,!×,÷,(),! Partners forMathematicsLearning
12 NumberSenseIs... Aperson’sunderstandingofnumberconcepts, operations,applicationsofnumbers&operations Theabilitytousethisunderstandinginflexible waystomakedecisionsandtodevelopuseful strategiesforusingnumbersandoperations Theexpectationthatnumbersareusefulandthat mathematicsislogicalandmakessense Theabilitytousenumbersandapplicationsof numberstocommunicate,process,andinterpret information -fromMcIntosh,Reys,Reys,&Hope,NumberSENSE,Grades4-6 Partners forMathematicsLearning
13 StudentswithNumberSense… Havewell-understoodnumbermeanings Understandmultipleinterpretationsand representationsofnumbers Recognizetherelativeandabsolute magnitudeofnumbers Appreciatetheeffectofoperationson numbers Havedevelopedasystemofpersonal benchmarks NCTMCurriculumandEvaluationStandards,1989 Partners forMathematicsLearning
14 NumberRelationshipsCanBe… Comparedasgreaterthan, lessthan,orequal Decomposedintoa combinationofothernumbers Composedwithothernumbers tonameanewnumber Namedindifferentways Categorizedasmultiples, factors,powers,roots Partners forMathematicsLearning
15 NumbersintheRealWorld Lookinnewspapers,magazines, billboards,andothersourcesfornumbers inthesecategories: Anumberinthemillions Aprimenumber Afractiongreaterthan½ Adecimalgreaterthan.75 Thefactorsof48 Amixednumber Partners forMathematicsLearning
16 NumberLines 987 992 n 1017 Whatarethemissingvalues? Whatnumberisn? Howmightyoulabelthenumberline? Partners forMathematicsLearning
17 PatternsinMultiples Noticeallthemultiplesofagiven numberonthe“PatternsinMultiples”Chart Comparethepatterneachnumbermakes withothernumberpatterns Whatarethesimilarities?Whatarethe differences? Whatdothesepatternstellyouaboutthe relationshipsofthesenumbers?
18 DiscoveringPrimesandSquares Asatablegroup,cutoutallrectangular arraysthatcanbemadewitheachofthe numbers2through20(a3x4arrayisthe sameasa4x3array) Organizearraysandlistthedimensionsof thearraysyoumadeforeachnumber Whatdoyounoticeaboutthenumberof arraysthatcanbemadeforeachnumber? Partners forMathematicsLearning
19 DiscoveringPrimesandSquares Aretherenumbersforwhichonlyone arraycanbemade? Whatarethesenumberscalled? Whatkindsofnumbershavemore thantwofactors? Partners forMathematicsLearning
20 DiscoveringPrimesandSquares Forwhichofthenumbersdidyouhavean oddnumberoffactors? Howisthesetofarraysforthesenumbers differentfromothernumbers? Partners forMathematicsLearning
21 Sample Classroom Questions ExploringFactors Whatisthesmallestpossible numberthathasexactly9factors? Whatisthesmallestcomposite squarenumber? Findanumberwithmorethan9factors Rollcomeinpacksof6;hotdogscomein packsof8.Howmanypacksofeach shouldwebuytouseeverything? Partners forMathematicsLearning
22 WhatThenIsPrimeFactorization? Factoringanumberusingonlyprimefactors 180=15x12 3x5x3x2x2=180 Identifyingalloftheprimenumbersthat, whenmultipliedtogether,equalthevalue 30=3x2x5 18=3x3x2 or 18=32x2 Partners forMathematicsLearning
23 WhatThenIsPrimeFactorization? Create2different“strings”offactorsfor eachproductbelow 24x15=360 21x12=252 48x60=2,880 Whatisthelongest“string”youcanfind? Whymaythenumber1notbeusedasa factor? Partners forMathematicsLearning
24 WhatThenIsPrimeFactorization? Didyoufindthese“strings”? 24x15=360 •2x2x2x3x3x5=360 21x12=252 •3x7x2x2x3=252 48x60=2,880 •2x2x2x2x3x2x3x2x5 Whatwasyourstrategy? Partners forMathematicsLearning
25 WhatThenIsPrimeFactorization? Factoringwith“trees”buildsonstudents’ knowledgeofnumberfactsanddivisibility 24 24 3 x 8 2x4 6 x 4 2x3x2x2 3 x 3 x 2x2x2 Determine:Afifthgradeexplorationor essentialstandard? Partners forMathematicsLearning
26 NumericalGuessMyRule Whatarethelabels? Partners forMathematicsLearning
27 NumericalGuessMyRule Whyaretheselabelsreasonable? Partners forMathematicsLearning
28 NumericalGuessMyRule FindtheRules Partners forMathematicsLearning
29 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Could itbe 60? Partners forMathematicsLearning
30 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Nope. Itcould notbe 60! Partners forMathematicsLearning
31 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Itislessthan80 Partners forMathematicsLearning Let me think
32 MysteryNumbers Iamthinkingofanumber Itisgreaterthan5x10 Itislessthan100 Itiseven Itisnot70orless Itisnotamultipleof4 Itisnotamultipleof3 Itislessthan80 Partners forMathematicsLearning
33 MysteryNumbers Ifyouadd5tomymysterynumberyouwill getthesameresultaswhenyousubtract mymysterynumberfrom89 Whatismynumber? = + ? - ? Partners forMathematicsLearning
34 MysteryNumbers Writethemysterynumbercluesymbolically: n+5=89–n Trythese: 23+a=39–a 8xb=54–b 40–c=c+14 Partners forMathematicsLearning
35 ComputationalFluency “Bytheendof[grade5]studentsshouldbe computingfluentlywithwholenumbers…. Studentsexhibitcomputationalfluencywhen theydemonstrateflexibilityinthe computationalmethodstheychoose, understandandcanexplainthesemethods, andproduceaccurateanswersefficiently. Thecomputationalmethodsthatastudentuses shouldbebasedonmathematicalideasthatthe studentunderstandswell.” FromPrinciplesandStandardsforSchoolMathematics,NCTM,2000,page152,emphasisadded Partners forMathematicsLearning
36 ComputationalFluency “Flexibilitywithavarietyofcomputational strategiesisanimportanttoolforsuccessfuldaily living.Itistimetobroadenourperspectiveof whatitmeanstocompute.” “Nostudentshouldbepermittedtouseany strategywithoutunderstandingit.” JohnVandeWalle,TeachingStudent-CenteredMathematics,Grades3-5,pages101-102 Partners forMathematicsLearning
37 ComputationalFluency Whatarewetryingtoachievewhen weteacharithmetictoday? RoteCalculatorsor ProblemSolverswhoexhibitarithmetic fluency* *Fluencymeanscomputing accurately,efficiently,andflexibly Partners forMathematicsLearning
38 ResearchIsShowing… Teachingtraditionalalgorithmstooearly impedesthedevelopmentofnumbersense Studentsnottaughttraditionalalgorithms duringthefirst5yearsofschool(ages5-11) Acquiredanddevelopedgoodnumbersense, and Evenaftertheyweretaughtstandard algorithms,theypreferredtheirownmethods FromresearchofAlistairMcIntosh,UniversityofTasmania,andothers,reportedatICME-10,Copenagen,2004 Partners forMathematicsLearning
39 ResearchIsShowing… Ratherthanalgorithms,thestudents… Performedmentalcalculations Explainedtheirownstrategiesfor computations,and Intheprocess,developednumbersense FromresearchofAlistairMcIntosh,UniversityofTasmania,Australia,andothers,reportedatICME-10,2004 Partners forMathematicsLearning
40 ResearchIsShowing… Atleastshortterm,thereisevidencethata strategiesapproachtomentalcomputation Hasapositiveeffectonstudents’competence, confidenceandenjoyment Isaviablealternativeclassroomapproachto teachingmentalcomputation Isconsonantwithaconstructivistapproachto mathematicsteaching Improvesstudents’abilitytodiscuss,explain,and justifyorally FromresearchofAlistairMcIntosh,UniversityofTasmania,andothers,reportedatICME-10,2004 Partners forMathematicsLearning
41 ResearchIsShowing… Anemphasisontraditionalalgorithmsandon mentalmethodsofspeedandaccuracy (ratherthanstrategies) Doesnotleadtonumbersense Providesaninefficientmethodofimproving thementalcomputationskillsespeciallyofless confident/competentstudents Inhibitsflexiblethinking FromresearchofAlistairMcIntosh,UniversityofTasmania, andothers,reportedatICME-10,2004 Partners forMathematicsLearning
42 WhatAreOurGoalsandChallenges? “Theultimatepurposeofarithmetic instructionisthedevelopmentoftheability toTHINKinquantitativesituations” WilliamBrownell,1934 Partners forMathematicsLearning
43 AlternativeStrategies Student-developedstrategieshave advantagesforchildrenovertraditional algorithms Theyarenumberorientedratherthandigit oriented Theyareleft-handedratherthanright-handed Theyareflexibleratherthanrigid Theyoftenemployoperationproperties adaptedfromJohnVanDeWalle,TeachingStudent-CenteredMathematics,Grades3-5,1997 Partners forMathematicsLearning
44 Digitvs.NumberOrientation Traditionalapproachesemphasizeplace valueoftenmodeledonBase10materials withstandardverticalalgorithms Ratherthanbeingdigitoriented,anumber senseapproachorinventedstrategies approachisnumberoriented–not separatingadigitfromitsvaluewithin thenumber Partners forMathematicsLearning
45 ResearchSays… Childrenneedinformal,reliable,butnot necessarilystandard,methodsofcomputing Childrendon'tspontaneouslydevelopthe standardalgorithms Childrenneedthechoicenottousethealgorithms -AlistairMcIntosh,UniversityofTanzania,emeritus,atICME-10,2004 Ifyouuseit,youmustunderstandwhyitworks andbeabletoexplainit -JohnVandeWalle,TeachingStudent-CenteredMathematics,Grades3-5,2006 Partners forMathematicsLearning
46 HigherExpectations-NotLower Thispositiondoesnotmeanlower expectationsforcomputationalexpertise Rather,wehavehigherexpectationsfor accuratecomputingwithunderstanding Timeinvestedinunderstandingresultsin long-termlearning Partners forMathematicsLearning
47 Multiplication:MentalStrategies Withoutusingthetraditionalalgorithm,how wouldyousolvethese? 14x15 325x4 333x20 Partners forMathematicsLearning
48 WhatAretheMisunderstandings? Partners forMathematicsLearning
49 EstimatingSolutions Whatisareasonableestimatefor 35x48? Howdidyoumakeyourestimate? Whywouldanestimatebehelpfulwhen computing? Partners forMathematicsLearning
50 HowDoTheseWork?