1 / 68

Partners for Mathematics Learning

1. PARTNERS for Mathematics Learning Formative Assessment to Support Student Learning Module 5 Grades 3-5 Decisions about Next Steps. Partners for Mathematics Learning. 2. Overview  Module 1: Learning Targets  Module 2: Questioning and Task Selection

Mia_John
Download Presentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning FormativeAssessmenttoSupportStudentLearning Module5 Grades3-5 Decisions about NextSteps Partners forMathematicsLearning

  2. 2 Overview Module1:LearningTargets Module2:QuestioningandTaskSelection Module3:InferencesandFeedback Module4:MakingStudentsActivePartners Module5:DecisionsaboutNextSteps Module6:CollaborationAroundAssessment Partners forMathematicsLearning

  3. 3 Teaching-LearningCycle Clear Learning Targets Decisions About NextSteps Questioning& Instructional Tasks Collaboration Around Assessment Making Inferences &Giving Feedback Partners forMathematicsLearning StudentSelf- Assessment& Responsibility

  4. 4 MakingDecisionsaboutNextSteps Learningtargetsforthismodule Understandanduseinformationabout learningneedsofindividualstudentsto makedecisionsaboutnextinstructional steps Identifystrategies forinterventionand differentiation Partners forMathematicsLearning

  5. 5 MakingDecisionsaboutNextSteps Thequalityanddepthofstudentlearningis influencedbythedecisionsteachersmake Thus,formativeassessmentshould Giveinformationaboutstudents’understanding Guideteachersinchoosinginterventionsfor individualstudents Assistinplanningnextstepsforthewholeclass Formativeassessmentdatahasvalue accordingtohowwellweuseittoplan Partners forMathematicsLearning

  6. 6 InformationAboutStudents Wegatherinformationaboutstudents’ understandinginmanyways… Students’writtenwork Conversationsorinterviews withindividuals Classdiscussions Pre-assessmentsfor learningtargets Partners forMathematicsLearning

  7. 7 MakingDecisionsaboutNextSteps WholeClassInstruction DifferentiatedInstruction–designing instructiontomeetneedsofallstudents acrossthespectrumofmastery Withinthecontextofwholeclassinstruction Interventions–specificstrategiestomeet identifiedneedsofchildren Individualized/smallgroupinstruction Inthismodule,wefocusonchildrenatrisk Partners forMathematicsLearning

  8. 8 ThreeStarsandaWish Inyourjournal… Listwaysyouareusingformativeassessment toinformyourinstructionalplanning Listthewaysyouarecurrentlydifferentiating instructioninyourclassroom Listtheinterventionsyoucurrentlyuse Starthe3mosteffectiveofthese Writeonespecificwishforideasrelated tothese Partners forMathematicsLearning

  9. 9 ResearchSuggestsStrategies Toeffectivelymeetallstudents’needs… Keepfocusonconceptsandsense-making Useformativeassessmentstrategiesto understandstudents’thinking Maintainhighexpectationsforachievementof learningtargetsforallstudents Useongoingassessmentstoidentifystudents whoneedadditionalsupportorextensions Involvestudentsmoreinself-assessment Useassessmenttomakeflexiblegroupings Partners forMathematicsLearning

  10. 10 FlexibleGroups Flexiblegroupingisahallmarkofa classroomthatmeetsstudentsneeds Groupsarenotstaticbutareever- changingbasedonavarietyofcriteria Responsestotasks Readiness Workhabits Performance StudentInterests andchoices Partners forMathematicsLearning

  11. 11 TypesofGroups Wholeclass Individualwork Teacherdesignated groups Randomgroups Readinessfortasks Likereadiness Differentlevelsof readiness Learningstyles Similar Random Studentinterests Studentchoice Whatotherwaysdo yougroupstudents? Partners forMathematicsLearning

  12. 12 LookingatStudentWork Dailypracticemaybeusedtomake decisionsabouttheneedsofstudents Lookatthestudentworkandtalkatyour tableaboutwhatyouknowaboutthese studentsandtheirknowledge Whatwouldyoudoinawholeclasslesson? Howmightyougroupstudentsbasedonthe work? Bepreparedtoshareyourideas Partners forMathematicsLearning

  13. 13 WholeGroupLessons Wholegrouplessons Providecommonexperiences Exposestudentstoavarietyofthinking Cansupportindividualneedsandstrengths • • • • Usethink/pair/sharestrategy Allowwaittimebeforeresponses Encourageresponsesfromseveralchildren Connectcommentstopreviousspeakers Welearnmuchmoretogetherthanwe canalone Partners forMathematicsLearning

  14. TwoStrategies 14 WholeGroupLessons Havestudentslookatexamplesanddiscuss whicharecorrect,whicharenotandwhy Putsamplesonanoverhead,documentcamera, orwritethemontheboard Besurenostudentnamesareattached Letstudents-notteacher-discusserrors Teacherchooses3or4problemstodiscuss withtheclassandthengivesstudentsan opportunitytosolve3or4similarproblems Partners forMathematicsLearning

  15. 15 ClassDiscussions Classroomdiscussionsprovideinformationfor teachersandbuildsunderstandingamong students Misconceptionssurfacewhichhelpteachersidentify whatstudentsdoandstilldonotunderstand Studentsrealizetheirownlackofknowledgeor understandingwhentheyareaskedtotalkorwrite aboutaconcept Discussionshelpmeetindividualneedswithin wholeclasslessons Partners forMathematicsLearning

  16. 16 ToolsforClassroomDiscussions Teacherre-voiceschild’sstatement “Soyou’resayingthat…” Studentsrestateanother’sreasoning “Canyouputherideaintoyourownwords?” Studentssharedifferentstrategies “Whosolvedtheprobleminadifferentway?” Applyownreasoningtoanother’sreasoning “Doyouagreeordisagree?Why?” Partners forMathematicsLearning

  17. 17 ToolsforClassroomDiscussions Promptingfurtherexplanation “Saymoreaboutthat” Promptingfurtherparticipation “Wouldanyoneliketoaddtohisidea?” Promptingaresponsefromallstudents “Thumbsupifyouunderstandthesolution” Waitbeforeandafterresponses “Takeyourtime…We’llwaitforyoutothink” Waitatleast5-10secondsforstudentstothink Partners forMathematicsLearning

  18. 18 Pre-AssessmentofLearningTargets Pre-tests,pre-assessments,diagnostic assessments Needtobenarrowlyfocusedoncontentin nextinstructionalunit Resultshighlightneedsofstudentswho appearateitherextreme(knowcontentor missalmosteverything) Resultsidentifyareasthatneedmoreorless timefortheclassasawhole Partners forMathematicsLearning

  19. 19 Pre-AssessmentofLearningTargets Pre-Assessmentshelpyouknow: Howfamiliararemystudentswiththisconcept? Whatknowledge,skillsandstrategiesdothey alreadyhavetosupportlearninginthisarea? Whatmisconceptionsdotheyhave? Aretheycomfortablewiththevocabularywithin thistopic? DaceyandLynch,MathForAll:DifferentiatingInstruction,2007 Partners forMathematicsLearning

  20. 20 Pre-AssessmentofLearningTargets Partners forMathematicsLearning

  21. 21 CreatingaPre-Assessment Inyourgradelevelgroupsdeterminea potentiallearningtargetforyourstudentsthat youwilladdressinthecomingweeks Togetherwritea3-4questionpre-assessment forthelearningtargetthatwillallowyouto “takethepulse”ofyourclass Thinkaboutthedifferentkindsofknowledge studentswillusetorespondtothequestions Partners forMathematicsLearning

  22. 22 WhatNext?MakingPlans Pre-Assessmentsmaycauseustochange LearningTargets InstructionalPlans Questionstoaskyourself: Wherearewegoing? Wherearewenow? Howcanwegetthere? ? ? ? ? ? Partners forMathematicsLearning

  23. 23 WhatNext?MakingPlans Learningtargetsforthis pre-assessmentinclude Identificationofangles Comparingandcontrastingpolygons Usingpre-assessments Examinetheresultsofathirdgradepre- assessmentforageometryunit Identifycommonmisconceptionsandgaps inunderstanding Partners forMathematicsLearning

  24. 24 WhatNext?MakingPlans Whatdoyounotice? Isthereawholegrouplessonthatwillbenefit allstudents? Aretherestudentswhoneedspecific interventions? Aretherestudentswhoalreadydemonstrate masteryofthelearningtargets? Howcanalessonbedifferentiatedtomeet theneedsofthesestudents? Partners forMathematicsLearning

  25. 25 WhatNext?MakingPlans “…ourjobistochallengestudents’comfortlevel andthentohelpthemfindtheirnextboundaries. …wetrytoidentifyevidenceforwhatthechild knowsorhasmastered,areaswhereinitialideas areformedbutadditionalexperiencewiththem isneeded,andthoseconceptsandskillsthat requirefurtherscaffoldingoradditionalreadiness development.” DaceyandLynch,MathforAll:DifferentiatingInstruction,2007 Partners forMathematicsLearning

  26. 26 KeepinMind… ZoneofProximalDevelopment Vygotsky(1978),Fleer(1992),Jacobs2001) Student’s Current achievement http://www.learningandteaching.info/learning/constructivism.htm Partners forMathematicsLearning

  27. 27 DifferentiatedInstruction “DifferentiatedInstructionisanorganized, yetflexiblewayofproactivelyadjusting teachingandlearningtomeetstudents wheretheyareandhelpallstudents achievemaximumgrowthaslearners.” CarolAnnTomlinson(1999).HowtoDifferentiateInstruction inMixed-abilityClassrooms.Alexandria,VA:ASCD Partners forMathematicsLearning

  28. 28 DifferentiatedInstruction        Flexiblegroupings Scaffolding TieredAssignments Choices/Anchors/Menus LearningContracts Compacting Pre-teachingand Mini-lessons Partners forMathematicsLearning

  29. 29 ScaffoldingLearning Scaffoldsarestructuresputinplaceto allowstudentstobesuccessfullearners ofmathematics Scaffoldinggiveschildrenopportunities toaccomplishtasksthat theywouldbeunableto completealone Partners forMathematicsLearning

  30. 30 ScaffoldingLearning Teacherbecomesacoach– helpingallchildrenreachtheirpotential Scaffoldinglearningisguidingthestudent towardthekindofthinkingthatis necessarytodothetask,nottoward onespecificstrategyoranswer Scaffoldinglearningdoesnotmean replacingstudentthinkingwithteacher thinking Partners forMathematicsLearning

  31. 31 ScaffoldingLearning Scaffoldsmay Includequestionsthatleadstudentstobe moresystematicorlogical Encouragestudentstogobeyondtheirlevelof comfortandunderstanding Helpdevelopstrategiesexplicitlyforworking withnewmathematicalcontentandactivities Connectnewlearningtopriorknowledge Partners forMathematicsLearning

  32. 32 Scaffolding:Questions 2 Task:Shadeofthisset: 3 Teacher:Whatisthis taskaskingyoutodo? Whatdoyoualready knowthatwillhelp? Partners forMathematicsLearning

  33. 33 Partners forMathematicsLearning

  34. 34 Scaffolding:Questions 2 Task:Shadeofthisset: 3 Thestudentresponds byshadingasshown Teacher:Showme howwhatyoushaded represents2/3ofthe set Partners forMathematicsLearning

  35. 35 Scaffolding:Questions 2 Task:Shadeofthisset: 3 Studentshades secondgroup Teacher:Howdoyou knowthatyouhave 2 3 Partners forMathematicsLearning shadedoftheset?

  36. 36 Scaffolding:Questions 2 3 Teacher:Howmany 2 3 Partners forMathematicsLearning Task:Shadeofthisset: circlesareinof theset?

  37. 37 Scaffolding:GraphicOrganizers Howareasquareandarectanglealike anddifferent? Alike Different WordBank Partners forMathematicsLearning

  38. 38 Scaffolding:GraphicOrganizers TogetherToddandKerriearned28pointsinthe basketballgame.Toddearned3timesasmany pointsasKerri.HowmanypointsdidToddearn? Partners forMathematicsLearning

  39. 39 Scaffolding:GraphicOrganizers TogetherToddandKerriearned28pointsinthe basketballgame.Toddearned3timesasmany pointsasKerri.HowmanypointsdidToddearn? 28 Todd Kerri Partners forMathematicsLearning

  40. 40 Scaffolding:GraphicOrganizers Timhad$1.00incoins.Hehad15coinswhich wereonlydimesandnickels.Howmanyofeach kindofcoindidhehave? WorkSpace: dimes nickels Partners forMathematicsLearning

  41. 41 Scaffolding:VaryProblemStructures Seandrove120milesandstoppedforlunch. Thenhedroveanother180milesbeforehe reachedhisdestination.Howmanymilesdid Seandrive? Whatdoweknow? Whatarewetryingtofindout? 120+180=? Partners forMathematicsLearning

  42. 42 Scaffolding:VaryProblemStructures Seandrove120milesandstoppedforlunch. Thenhedrovesomemore.Bythetimehe gottohisdestination,hehaddriven300 miles.Howmanymilesdidhedriveafter lunch? Whatdoweknow? Whatarewetryingtofindout? 120+?=300 Partners forMathematicsLearning

  43. 43 Scaffolding:VaryProblemStructures Seandroveforawhilebeforehestoppedfor lunch.Afterlunchhedrove180milesto reachhisdestination.Whenhegottherehe haddriven300miles.Howmanymilesdid Seandrivebeforelunch? Whatdoweknow? Whatarewetryingtofindout? ?+180=300 Partners forMathematicsLearning

  44. 44 Scaffolding:VaryProblemStructures Seandrove120milesandstoppedforlunch.Thenhedroveanother 180milesbeforehereachedhisdestination.HowmanymilesdidSean drive? Seandrove120milesandstoppedforlunch.Thenhedrovesome more.Bythetimehegottohisdestination,hehaddriven300miles. Howmanymilesdidhedriveafterlunch? Seandroveforawhilebeforehestoppedforlunch.Afterlunchhedrove 180milestoreachhisdestination.Whenhegottherehehaddriven 300miles.HowmanymilesdidSeandrivebeforelunch? Howdoesvaryingtheorderinwhichyou givestudentsproblemsprovidesupport forstudents? Partners forMathematicsLearning

  45. 45 Scaffolding:VaryProblemStructures Set1 Set2 Total Partners forMathematicsLearning

  46. 46 Scaffolding:VaryProblemDifficulty Seandrove(60,120,3407)mileslastyear onhisvacation.Hedrove(93,180,2159) milesonthisyear’svacation.Howmany milesdidSeandriveonbothvacations? Teachersmaydirectwhichnumberstouse Studentsmaychoosenumberstouse Whatconversationsmightstudentshave whenyouusethistypeoftask? Partners forMathematicsLearning

  47. 47 Scaffolding:UsingModels Modelsandrepresentationshelpstudents Makesenseofmathematics Organizetheirthinking Justifytheirresponses Communicatetheirideas Creatementalimagesofmathematical ideasthattheycanuseinsolvingproblems Partners forMathematicsLearning

  48. 48 ScaffoldingLearning Allchildren-evenourmostadvanced students-shouldbechallengedtostruggle withtasksthatrequiresomesupportto accomplish Supportthroughgraphicorganizers Supportbyworkingwithapartner Supportbyworkinginagroup Challengesshouldinvolvemeaningful mathematicstodevelopdepthofthinking Partners forMathematicsLearning

  49. 49 TieredAssignments Tieredactivitiesorlessons Aseriesofrelatedtasksofvaryingcomplexity Relatetoessentialunderstandingsandkey skillsthatstudentsneedtoacquire Assignedasalternativewaysofreachingthe samegoalstakingintoaccountindividual studentneeds Canutilizealternativetasksintextbooks Partners forMathematicsLearning

  50. 50 ProcessofTieredAssignments Identifythelearningtarget Formgroupsbasedonassessments Planameaningfulactivityforeachgroup dependingonthestudents’needs Partners forMathematicsLearning

More Related