1 / 53

Partners for Mathematics Learning

1. PARTNERS for Mathematics Learning Grade One Module 4. Partners for Mathematics Learning. 2. What is Geometry? “geo” - means earth “metry” – means measure “Measurement of the earth”. Partners for Mathematics Learning. 3. We know that…  Children develop spatial

jenaw
Download Presentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning GradeOne Module4 Partners forMathematicsLearning

  2. 2 WhatisGeometry? “geo”-meansearth “metry”–meansmeasure “Measurementoftheearth” Partners forMathematicsLearning

  3. 3 Weknowthat… Childrendevelopspatial awarenessandreasoning overtimeasaresultof whattheyexperience Veryearlytheylearnto recognizebasicshapes evenwhentheydonot alwaysattachan appropriateterm Partners forMathematicsLearning

  4. 4 EssentialStandards Classifyaccordingtogeometricattributes2-D shapesasparallelograms,rhombuses, trapezoids,andhexagonsand3-Dshapesas prismsandpyramids Comparegeometricfiguresintermsoftheir perspectives,orientations,attributes,and properties Representdifferentperspectivesand orientations,describeafigure’sgeometric attributesandproperties,anddeterminehow figuresarealikeanddifferent Partners forMathematicsLearning

  5. 5 WhatDoWeRemember? Turntohandout1andtakeafewminutes tocompletethechart Thinkabout:Whatwillstudentsneedto knowandbeableto doforthesestandards? Whatnewvocabulary dostudentsneedto learnthisyear? Partners forMathematicsLearning

  6. 6 Polygon Closedplanefigureboundedbythreeor morelinesegmentsthatmeetonlyattheir endpoints polygons NOTpolygons 2-Dfigures Canbeclassifiedbythenumberofsides Partners forMathematicsLearning

  7. 7 Quadrilateral Polygonwithfoursides Whyarethesefiguresnotquadrilaterals? Partners forMathematicsLearning

  8. 8 Parallelogram Quadrilateralwithoppositesidesparallel andequalinlength Oppositeanglesarecongruent parallelograms Partners forMathematicsLearning

  9. 9 Rectangle Closedfigurewithfourlinesegments,2 pairsofparallellines,andfourrightangles (“squarecorners”) rectangles NOTrectangles Studentsneedtoseerectanglesthatare rotated-notparalleltoedgeofpaper Partners forMathematicsLearning

  10. 10 Rhombus(RhombusesorRhombii) Havefoursidesallhavethesamelength Closedfigurewithoppositesidesparallel Diagonalsareperpendicular NOTrhombus Partners forMathematicsLearning rhombus

  11. 11 Square Hasfoursides(linesegments)allofthe samelengthaswellasfourrightangles Everysquareisarectangle Closedfigure squares Partners forMathematicsLearning

  12. 12 SquaresAreRhombusesAre… quadrilaterals rectangles squares rhombuses polygons Partners forMathematicsLearning

  13. 13 Trapezoid Closedfigure,madeoffourlinesegments, exactlytwoofwhichareparallel(onepair ofparallelsides) Redpatternblockisanexample trapezoid NOTtrapezoid Partners forMathematicsLearning

  14. 14 Hexagon Polygonwithsixsides Theyellowpatternblock(liketheredone below)isahexagon hexagons nothexagons Partners forMathematicsLearning

  15. 15 AvoidingMisconceptions If isahexagon Is ahexagon? Partners forMathematicsLearning

  16. 16 Two-Dimensional(2-D)Shapes Alsocalledplanefigures Shapesthatcanbecompletelyseenin oneplane(shownonaflatsurface) Circlesareplanefiguresbutarenot polygons Partners forMathematicsLearning

  17. 17 Shapes,Sides,Corners,Congruent?     Whatisthisshape? Howmanysides? Howmanyvertices? HowcanIcutthisshapetogettwo smallerrectangles? Arethetworectanglescongruent? Arethereotherwaystocutthisshapeto have2rectangles? Partners forMathematicsLearning

  18. 18 CuttingCorners Get5indexcardsandmakestraightcuts fromonesidetoanadjacentsidetomake… A.Atriangleandapentagon B.Twoquadrilateralsthataretrapezoids C.Tworectangles D.Twotriangles E.Atriangleandaquadrilateralthatisatrapezoid Howmanysidesandverticesaretherefor eachshape? Partners forMathematicsLearning

  19. 19 Cutting… B.. A. C. D. E. Doyourshapeshavetolookexactlylike thesetobecorrect?Whyorwhynot? Partners forMathematicsLearning

  20. 20 . . . . . . . . . . . . . . . . . . . . . . . . . ShapesonaGeoboard Predicthowmanyexamplesofyourshape (differentsizeandshape)youcanmake onyourgeoboard Decidehowyouwillkeeparecord Makeashape,record,makethenext shape(reuserubberbandssothatonly onefigureatatimeisontheboard) Makeasmanydifferentexamplesasyou canusingyourgeoboard Partners forMathematicsLearning

  21. 21 FashioningFour Useageoboardand rubberbandstocreate four-sidedfigures Howmanydifferent shaped,closedfigures withfoursidescanyou create? Howcouldwesortthese? Partners forMathematicsLearning

  22. 22 PolygonButNotaQuadrilateral?      Areallquadrilateralspolygons? Areallpolygonsquadrilaterals? Allsquaresarerectangles Areallrectanglessquares? Canthesamefigurebeaparallelogram andarectangleandarhombus? Areallpolygonsclosedfigures? Areallplanefigurespolygons? Partners forMathematicsLearning

  23. 23 BigIdeaforGeometry Two-dimensionalshapesarecombinedto makethree-dimensionalshapes Partners forMathematicsLearning

  24. 24 2-Dimensionalto3-Dimensional Polyhedronmeans“manyfaces” Edge--3-Dterm Formedwhere twofaces coincideFace—3-Dterm Aflatsurfaceon Vertex—apointApolyhedron wheretwoormore(Facesarepolygons) edgesmeet Partners forMathematicsLearning

  25. 25 Pyramid Hasabasethatisapolygonandsidesthat aretriangles Hasonepointatthetop,calledanapex triangularpyramid squarepyramid rectangularpyramid Partners forMathematicsLearning

  26. 26 Prisms Thesearethree- dimensionalshapes whosesidesareall formedbypolygons Theyareprisms becauseends(or bases)arecongruent andsidesare parallelograms Partners forMathematicsLearning

  27. 27 Three-DimensionalShapes Partners forMathematicsLearning

  28. 28 BuildingonStrengths “Somestudents'capabilitieswith geometricandspatialconceptsexceed theirnumberskills.Buildingonthese strengthsfostersenthusiasmfor mathematicsandprovidesacontextin whichtodevelopnumberandother mathematicsconcepts.” RazelandEylon1991 forMathematicsLearning

  29. 29 MoreInformation Whatvocabularywill youusewithfirst graderstoteachthis standard? Giveexamplesof vocabularyusedfor: Perspective Orientation Attribute Property Comparegeometricfigures intermsoftheir perspectives,orientations, attributes,andproperties Partners forMathematicsLearning

  30. 30 OralMap Standbesideyourchair Countyourstepsoutloudasyoumove towardtheclassroomdoor Saywhichwayyouareturning Keepcountingoutloudasyoumovetothe door Howdothedirectionschangeifyougo backtoyourseatfromhere? forMathematicsLearning

  31. 31 ThePathHome Placearedandagreencube onoppositesidesofthe geoboard Userubberbandstomakea pathfromonecubetothe other Describethepathorallyand haveyourpartnerrecordon dotpaperwithoutseeingyour geoboard Partners forMathematicsLearning

  32. 32 OvertheWall Openafoldertomakea “wall”betweenyouandyourpartner Person1buildsadesignwithpatternblocks Describehowyourpartnercanmakethe samedesignontheothersideofthewall Takethewalldownandseeiftheshapes arethesame Discuss:Whatadditionaldirectionsmight yougivestudentsastheyfirstdothetask? Partners forMathematicsLearning

  33. 33 DifferentPerspectives “FromwhereIamstanding…” “WhenIlookupIsee….” “Lookingdownmakesitlooklike…” Partners forMathematicsLearning

  34. 34 Composeanddecompose geometricfiguresinterms oftheirperspectives, MoreInformation orientations,attributes,and properties Thisstandardhasbeen changed Whatdostudentsneedto knowandbeabletodoto masterthisstandardasit nowexists? Partners forMathematicsLearning

  35. 35 PatternBlockPuzzles     Chooseapuzzle Coverthepuzzlewithpatternblockpieces Howmanypiecesdidyouuse? Didsomeoneelseusemoreorless? Partners forMathematicsLearning

  36. 36 GoodMoves… Howdidyoubegintofillinthe puzzleoutline? Asyouworked,howdidyou decidewheretoplaceyour blocks? Didyourstrategychangeas thepuzzlebecamecloserto beingfull?Ifso,how? Partners forMathematicsLearning

  37. 37 ShapeSorters Smallgroupsofstudentsaregivena collectionofgeometricsolidsandattribute blockpieces Studentsthen Groupthecollectioninseveraldifferentways Sharefindingswithinthesmallgroups Smallgroupssharesortingpossibilities together forMathematicsLearning

  38. 38 TeacherLedDiscussions Askstudentstoexplaintheirsorts Directstudentstosortbyspecificcriteria Havestudentsfindthepolygonsthatare thefacesforthepolyhedra Remember-thisisayear-longactivity! Partners forMathematicsLearning

  39. 39 ModelWaysToRecord Studentscanrecordtheirobservationsand comparisonsofshapes Stamping Tracing Drawing Remember-activitieswithout conversationmaynothelp childrenmakeconnections Partners forMathematicsLearning

  40. 40 Two-PieceShapes Decomposing2-Dshapes Decompose Takingapart Composing2-Dshapes Composing Puttingtogether Partners forMathematicsLearning

  41. 41 Two-PieceShapes Howmanydifferentwayscanyouputthe trianglestogether? Isanyshapebiggerthananother? Partners forMathematicsLearning

  42. 42 BlocksWithFaces      Tracearoundthefacesoneachblock Areanyofthefacesthesame? Areanyofthefacesdifferent? Howmanyfacesdoesyourblockhave? Canyoumatchthefacesyoudrewto facesonotherblocks? Partners forMathematicsLearning

  43. 43 FaceMaps Afacemapofa_____________ Partners forMathematicsLearning

  44. 44 MysteryShapeMaps WhosefaceamI? Partners forMathematicsLearning

  45. 45 MyShapeJournal Writethenameoftheshapeontheline Tellhowyouknowthisisthenameofyour shape DrawapictureORcutapictureofyour shapefromamagazine Whatdoesyourshapelooklike? kite soupcan Partners forMathematicsLearning

  46. 46 QuiltWithMe     Choosefoursquares Cutsomeofthesquaresdiagonally Arrangetheshapestocoverthecard Whatshapesdoyouseeinyourquilt square? Partners forMathematicsLearning

  47. 47 WhatDoYouSee? Makealistoftheshapesand geometricvocabularyillustrated inyoursquare Passyoursquaretothepersononyourright Addtothelistoftermsillustratedandkeep passing Putyoursquarestogethertomakeatable quilt Partners forMathematicsLearning

  48. 48 MathFairBlues 2-and3-dimensional shapesandobjects helpSethandhis friendstobecomea hitattheMathFair Partners forMathematicsLearning

  49. 49 StillCircling… Whatdostudentsneedtoknowandbe abletodotomastertheseEssential Standards? Partners forMathematicsLearning

  50. 50 DPIMathematicsStaff EverlyBroadway,ChiefConsultant ReneeCunninghamKittyRutherford RobinBarbourMaryH.Russell CarmellaFairJohannahMaynor AmySmith PartnersforMathematicsLearningisaMathematics-Science PartnershipProjectfundedbytheNCDepartmentofPublicInstruction. Permissionisgrantedfortheuseofthesematerialsinprofessional developmentinNorthCarolinaPartnersschooldistricts. Partners forMathematicsLearning

More Related