600 likes | 619 Views
Explore fluency with facts and operations, equipartitioning, problem solving, and professional reading in this module. Learn different problem types and strategies for reaching 25.
E N D
1 PARTNERS forMathematicsLearning Grade1 Module6 Partners forMathematicsLearning
2 OverviewofSession Fluencywithfactsand operations Equipartitioning Problemsolving Professionalreading Problemtypes Partners forMathematicsLearning
3 Getto25 Startat0;firstperson enters1,2,3,4,or5 Secondpersonmayadd1,2,3,4,or5 ONLYifthenumberis(a)notshowingin thedisplayor(b)isnotthesumofthe digitsinthedisplaywindow Taketurnsaddingnumbers Winneristhepersonwhoreaches25 Partners forMathematicsLearning
4 Getto25 Doesitmatterwhogoes firstinthegame? Isthereanumbertoavoid? Isthereanumbertotrytoreach? Whatstrategiesdidyouuseintryingto reach25? Partners forMathematicsLearning
5 BigIdeainNumber:Fluency Fluency(accuracy,efficiency,flexibility)is reasoningaboutandusingrational numberoperationswithunderstanding Fluencyinvolvesknowingstrategiesfor retrievingbasicfactsandbeingabletoapply theminothercomputations Fluencyisbuiltuponnumberrelationships, placevalue,properties,andoperation understandings forMathematicsLearning
6 FluencywithNumberRelationships Magnitudeofnumbers:64isgreaterthan63 Onemorethananynumberisthenextcounting number:49+1issimilartocounting49,50 Onelessthananynumberistheprevious countingnumber:49-1isknowingthat48 comesbefore49 Countingbyconsistentgroups(ex.3’sor5’s) tonamethemultiplesofthatnumber Partners forMathematicsLearning
7 Fluency:KeyBehaviors Studentswhoarefluentusenumberfacts withoutbeingprompted Flexibility:3+4hasthesamesumas4+3 Efficiently:4+5is4+4+1(not4+1+1+1+1=1) Accurately:8-5=4can’tberightbecause4+4=8) Knowledgeofsumsto10 iscriticalforsuccesswith additionandsubtractionof multi-digitnumbers Partners forMathematicsLearning
8 DevelopingFluencyinClassroom ConstanceKamii’sresearchonlearning numbercombinationsfoundthat1stgrade studentsdemonstrated 55%AccuracyintheMemorizationClass 76%AccuracyintheRelational ThinkingClass Partners forMathematicsLearning
9 Part-Part-WholeRelationships Toconceptualizeanumberasbeingmade upoftwoormorepartsisthemostimportant relationshipthatcanbedevelopedabout numbers Sixandthreearethe sameamountasnine Partners forMathematicsLearning
10 HowManyObjectsDoYouSee? Partners forMathematicsLearning
11 HowCouldYouSolveThis? Isolveditthisway…..Iknewthat4+4=8 4+3+4+2= 8 ThenIaddedthe2tothe8toget10 8+3+2= 10 So10+3is13andthat’stheanswer! 10+3=13 Partners forMathematicsLearning
12 DropandDecide Viewhandoutworksheets Oncestudentsunderstandformat,use sheetsmultipletimesfordifferenttarget numbers GrabBag Concretetosymbolicinaworksheet Multipleaddendspresentaunique challengeforsomestudents Partners forMathematicsLearning
13 SpinningMoreorLess Partners forMathematicsLearning
14 TenTurnsRolling Reviewhandout Twostudentsshareapairofdice Eachstudentmayhaveaworksheetor studentsmayshare Studentscanverifysums Roll,record,andadd Howcouldtheactivitybeusedinacenter? Partners forMathematicsLearning
15 6 KnowIt!ShowIt! 3 Ingroupsofthree,read throughthehandoutandmakecertain everyoneunderstandsthedirections Playthreeorfourrounds,exchangingroles When,duringtheyear,mightyouhave studentsreadytoplaythisgame? Partners forMathematicsLearning
16 RelationalThinking 12-7= 7+__=12 9+5=10+4 Partners forMathematicsLearning
17 NumberTalks… Areclassconversationsaboutarithmetic problemsanddiscussionsthatcritique solutionstrategies Areworkdonementallywithminimum writingtorecordstrategies Helpstudentslearnbasicfactsthrough reasoninganddiscussion(notisolateddrill) Havestudentsusereasoningtodetermine ifastrategyiseffective Partners forMathematicsLearning
18 78+95 …NumberTalks Provideopportunitiesforchildrentoshare howtheythinkaboutnumbers Increasefluencyinoperationswithsmall numbersinordertoincreasefluencywith largenumbers Canbeadaptedforanygroup 801-347 26x52 Partners forMathematicsLearning
19 NumberTalks:StudentDirections Solvetheprobleminyourhead Putyourthumbupinfrontofyourchest whenyouhaveasolution Trytosolveinadifferentway Foreachdifferentsolution,putupanother finger Shareyoursolutionswithyourpartner Partners forMathematicsLearning
20 What’sMyNumber? Guessthesecretnumberonanumberline Ifguessistoobig,thelargetriangleisplaced abovetheguess Iftheguessistoosmall,thesmallertriangle isplacedabovethenumber Whatdoyouknowaboutnumbersbetween? 012345678910 Partners forMathematicsLearning
21 TryThisOne… 4243444546474849 Partners forMathematicsLearning
22 NumberoftheDay 6+6 5+5+1+1 dozen 12 dimeand 2pennies 13-1 7+5 Partners forMathematicsLearning
23 MeaningfulFactStrategies One-more-thanandtwo-more-than Countinguporcountingback Factswithzero Doublesandneardoubles Maketenfacts Factfamilies part-part Commutativepropertywhole Compensation Partners forMathematicsLearning
25 DevelopingFactFluency Expectations: Byendofgrade1,fluencywithaddition andrelatedsubtractionfactsto10 Explorefactsto18 Exploresumsbeyond10bybuildingon10s Byendofgrade2,fluency withadditionandrelated subtractionfactsto20 Partners forMathematicsLearning
26 AssessmentIsKey Determiningeachstudent’sunderstanding ofnumbercombinations Knowingwhichfactseachchildhasnotyet learnedandreassessingweeklytoencourage studentstomoveon Helpingstudentstake responsibilityfor learningfacts Informingparents withspecifics Partners forMathematicsLearning
28 HowDoYouRecognizeFluency? Talkwithapartneraboutnumberfluency in1stgrade Whatdostudentsdothatletsyouknowthey havenumberfluency? Whatdostudentsdothatlets youknowtheydonothave numberfluency? Howdoyoukeeptrack? Partners forMathematicsLearning
29 SupportingYourWork Considerusingthepowerpoint,discussion notes,andotherarticlesforCrossingfrom Grade1intoGrade2ingrade-levelmeetings Eachpersoncouldbring afavoritenumberfact gametoshare Discussionsofcommontasks andstudentworkalso supportsteacherplanning Partners forMathematicsLearning
30 FairSharesforTwo FairSharesforJulieandJennifer ReferbacktoliteraturebookJustLikeMe Discusshowsisterssharedthings Whathappenedtothe“leftovers”? WhichnumberscouldJulieand Jennifersharefairly? Partners forMathematicsLearning
31 BumpyorNotBumpy Cutoutthetwo-columncards Whatcanyoutellaboutthepieces? Howcanyouorganizethesepieces? Orderpieces Sortthepiecesintotwogroups;givetherule Determineifyournumbersareorarenot bumpy Howdoyouknow? Partners forMathematicsLearning
32 EvenorOdd Evennumber:anamountthatcanbe madeoftwoequalpartswithnoleftovers Oddnumber:anamountthatcannotbe madeupoftwoequalparts Observableattribute:NOTadefinition Numbersendingin0,2,4,6,8 Numbersendingin1,3,5,7,9 Partners forMathematicsLearning
33 “SenseofBalance” Eachshapehasauniquewhole numberweightmorethan0 Differentshapeshavedifferent weights;identicalshapeshavesameweights Thesizeofshapesisnotrelatedtoweight Ashapehangingdirectlybelowthefulcrumdoes notaffectthebalanceofarmstoleftorrightofthe fulcrum Distancefromfulcrumdoesnotaffectweight Partners forMathematicsLearning
34 “SenseofBalance” Totalweightis32units Eachshapeweighslessthan10units Partners forMathematicsLearning
35 “SenseofBalance” Whatamounts(24,25,26)couldnot bethetotalweightforthispuzzle? Howdoyouknow? Partners forMathematicsLearning
36 Equipartitioning Equipartitioningreferstodividingawhole intoequalpartsormakingfairshares Childrenoftenbegintothinkofpartitioning intermsofsharingwithfriendsandeach gettingthesameamount Partners forMathematicsLearning
37 PaperFolding–Part1 Howmanytimesdoyouthinkyoucanfold thepattypaperinhalf? Howmanyequalpartswouldbecreated withthenumberoffoldsyoupredicted? Explainyourreasoning Beginfolding! Recordthetotalnumber offoldsandthenumberofpartscreated Partners forMathematicsLearning
38 Equipartitioning-Part2 Whatwouldhappenifyoufoldedinthirds eachtimeinsteadofhalves? Whatwouldhappenifyoufoldedthepaper inhalfandtheninthirds? Howmanydifferentwayscouldyoufolda pieceofpapertocreate24equalparts? Whichwayusestheleastnumberoffolds? Thegreatest? Partners forMathematicsLearning
39 Fair“Sharing” Wereeveryone’sfoldsthesame? Whatsimilaritiesanddifferencesarethere inthehalffoldsandthethirdfolds? Ifyouhavelargerpaper,could youfolditinhalfmoretimes thanyoucanfoldsmallpaper? Partners forMathematicsLearning
40 Equipartitioning LookattheEssentialStandardthatrelates toequipartitioning Whatexpectationsdotheclarifyingobjectives identify? Whatcanyoulearnfromtheassessment prototypes? Whataspectsofthisstandardarenewfor yourclassroom? Partners forMathematicsLearning
41 Equipartitioning Noticehowspatialreasoning,equality, measurement,andnumbercometogether inthisstandard Languageassociatedwithdivisionand fractionsareneededindiscussingthis standard,butfraction(symbolic)notationis NOTthepurpose Partners forMathematicsLearning
42 ProblemBasedLessons Researchhasindicatedthat beginningwithproblem situationsyieldsgreater problem-solvingcompetence andequalorbetter computationalcompetence forMathematicsLearning
43 BasicStructureofProblems AccordingtoCGI,therearefourbasic structuresforproblems,regardlessofthe magnitudeofnumbers JoinProblems SeparateProblems Part-Part-WholeProblems CompareProblems Recognizingtheproblemstructuresand identifyingonesthatseemtobemore difficultforstudentsishelpfulinplanning forMathematicsLearning
44 JoinProblems Join:ResultUnknown Sandrahad8pennies.Georgegaveher4more. HowmanypenniesdoesSandrahavealtogether? Join:ChangeUnknown Sandrahad8pennies.Georgegavehersome more.NowSandrahas12pennies.Howmany didGeorgegiveher? Join:StartUnknown Sandrahadsomepennies.Georgegaveher4 more.NowSandrahas12pennies.Howmany penniesdidSandrahavetobeginwith? forMathematicsLearning
45 SeparateProblems Separate:ResultUnknown Sandrahad12marbles.Shegave4marblesto George.HowmanymarblesdoesSandrahavenow? Separate:ChangeUnknown Sandrahad12marbles.ShegavesometoGeorge. Nowshehas8marbles.Howmanydidshegiveto George? Separate:StartUnknown Sandrahadsomemarbles.Shegave4toGeorge. NowSandrahas8marblesleft.Howmanymarbles didSandrahavetobeginwith? Partners forMathematicsLearning
46 Part-Part-WholeProblems Part-Part-Whole:WholeUnknown Georgehas4penniesand8nickels.How manycoinsdoeshehave? Part-Part-Whole:PartUnknown Georgehas12coins.Eightofhiscoinsare pennies,andtherestarenickels.Howmany nickelsdoesGeorgehave? Partners forMathematicsLearning
47 CompareProblems Compare:DifferenceUnknown Georgehas12penniesandSandrahas8 pennies.Howmanymorepenniesdoes GeorgehavethanSandra? Compare:LargerorSmallerUnknown Georgehas4morepenniesthanSandra. Sandrahas8pennies.Howmanypennies doesGeorgehave? Georgehas4morepenniesthanSandra. Georgehas12pennies.Howmanypennies doesSandrahave? Partners forMathematicsLearning
48 Teacher’sRoleinProblemSolving Choosesappropriateproblems Listenstostudents’strategies Asksquestionsandsupportsthinking Ensuresthatdifferentstrategiesareshared Howstrategiesarealike Howstrategiesaredifferent Encouragesstudentstosolve problemsinmorethanoneway Givesfeedback Partners forMathematicsLearning
49 ProfessionalReading MakingtheMostofStoryProblems TeachingChildrenMathematics December2008/January2009 Pages260-266 NationalCouncilofTeachersofMathematics Preparetoshareyourassignedpart Firstportionofarticle SupportingandExtendingMathematicalThinking Partners forMathematicsLearning
50 DebriefingTeacher’sRole Sharewithothersatyourtablethemain pointsfromyoursectionofthearticle Whatisdifferentaboutteachers’comments andquestionsbeforecorrectanswersare givenandaftercorrectanswersaregiven? Whatthreethingsimpressed youthemost? Whatideaswillyoutrythisyear? Partners forMathematicsLearning