1 / 52

Partners for Mathematics Learning

1. PARTNERS for Mathematics Learning Grade 3 Module 5. Partners for Mathematics Learning. 2. Big Ideas in Data  Data can be either categorical or numerical  Pose, Collect, Analyze, Interpret is a model for the process of statistical investigations

maloneyc
Download Presentation

Partners for Mathematics Learning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1 PARTNERS forMathematicsLearning Grade3 Module5 Partners forMathematicsLearning

  2. 2 BigIdeasinData Datacanbeeithercategoricalornumerical Pose,Collect,Analyze,Interpretisamodel fortheprocessofstatisticalinvestigations Differentrepresentationsandgraphs classifyandcommunicatedata Understandingbasicconcepts ofprobabilityallowustomake moreaccuratepredictions

  3. 3 CategoricalandNumericalData Studentsneedtodistinguishbetween questionsthatgivecategoricaland numericaldatabeforetheyposea questionandtrytointerpretthedata Justbecausenumbersareinvolved, dataarenotautomaticallynumerical Partners forMathematicsLearning

  4. 4 CategoricalData Valuesthatareoftenwordsthatrepresent possibleresponseswithrespecttoagiven category Representindividualsorobjectsbyoneormore characteristicsortraitsthattheyshare Examples: Monthsinwhichpeoplehavebirthdays Bestplacestoeat Favoritefruits StatesVisited

  5. 5 CategoricalData Valuesofthedatacanbeclassifiedand graphedbuthavenoinherentorder Somesetsofcategoricaldatahavemany differentvalues Questionsarerelatedtohowthedata areorganized Partners forMathematicsLearning

  6. 6 ProcessofStatisticalInvestigation Posethequestion Collectthedata Analyzethedata Interpretthedata Partners forMathematicsLearning

  7. 7 PosingaQuestion Posethequestion Identifyaspecificquestiontoexplore Thinkabouttheinformationyouwanttoknow Decidewhatdatatocollecttoaddressthe question Whataresomeissuesthatwillarisewhen 3rdgraderscreatequestions? Partners forMathematicsLearning

  8. 8 PosetheQuestion Alldatainvestigationsbeginwith aproblemorquestion Questionsshouldbefocused&precise Questionsmayneedtoberefined Studentsneedmultipleexperiences withposingquestionsandcarrying-out investigations Eachquestionshouldhaveapurpose

  9. 9 DevelopingCategories Whatwouldyouchooseasyourdream occupation? Howmightyouorganizeorclassify thedata? Differentquestionscanbeanswered byorganizingthedataindifferentways

  10. 10 RefiningtheQuestion Somesetsofcategoricaldata canhavemanydifferentvalues orcategories Tomakesenseofthedata,classifythe dataintoafewmajorcategories Toofewcategoriesmaygivelimited information Toomanycategoriesmayresultinfew datapiecesineachcategory Partners forMathematicsLearning

  11. 11 RefiningtheQuestion Whatdoyounoticeaboutyourdata? Whatmakesagoodcategory? Discussdifferentwaysyoumight categorizethedata Aretherewaystorearrangethedatato makethemeasiertounderstand Howcouldwearrangethedatatosee whethermorepeoplewereinterestedina professioninthearts?Inmedicine? Partners forMathematicsLearning

  12. 12 Organize-RefinetheQuestion Cananyofthesedatabeconsidered together? Aretherewaysinwhichsomeofourdata arethesame?Different? Whatdowedowhenapieceofdatadoes notfitinanycategory? Whatotherideasdoyouhaveaboutways toclassifythesedata? Partners forMathematicsLearning

  13. 13 CategoricalData Whatquestionsmightbe posedbythirdgraders? Whatdoyouwanttodowhenyougrowup? WhatisyourfavoriteWiigame? Whatdoyouliketodoinyourfreetime? Ifyoucouldbeanyanimalforaday,what animalwouldyoube? Wheredoyouliketoplay? Wheredoyouliketoeat?) Partners forMathematicsLearning

  14. 14 BarGraph showing ungrouped data BarGraph HowManyBooksReadSoFarThisSchoolYear 6 5 4 3 2 1 0 Students NumberofBooksRead ic am b ad ia y in e e ne co Er si rg ar Er Br Li s Ja M Jo rt Ca ou C

  15. 15 BarGraph HowManyBooksReadThisYear? 4 3 2 1 0 NumberofStudents 1 2 3 4 5 NumberofBooksRead

  16. 16 NumericalData Valuesthatarenumbers(counts, measurements,ratings) Representobjectsorindividualsby numbersassignedtocertainmeasurable properties Numberofyearsineducation Milesdriventoprofessional development Timeinminutestogettowork

  17. 17 NumericalData Thequestionposedshould resultindatathatarequantities Doesthequestion,“Whatisyourfavorite number”resultinquantitativedata? Giveexamplesandnonexamplesof questionsthatresultinquantitativedata? Answerstoquestionsshouldbean “amountofsomething” Partners forMathematicsLearning

  18. 18 TalkwithaPartner Whataresomenumericaldata questionsyourstudentscould explore? Partners forMathematicsLearning

  19. 19 PCAIModel Processof Statistical Investigation Partners forMathematicsLearning

  20. 20 PosetheQuestion Poseaquestiontodeterminethe distanceofyourgiantstep Questionshouldbefocusedandprecise Whatdoyouexpecttolearnfromthis investigation? Question(s)mayneedtoberefined Partners forMathematicsLearning

  21. 21 ProcessofMeasurement Determine typeofgiantsteptobemeasured attributetobemeasured appropriateunit processformeasuringthe distanceofthegiantstep thenumberofunitsmeasured Partners forMathematicsLearning

  22. 22 CollecttheData Step2:Firstdecide howtocollectthedata Notetheprocessofmeasurementis thesameforallattributes Anappropriateunithavingthesame attributeisneeded Sizeoftheunitshouldrelate reasonablytosizeofobjectbeing measured Partners forMathematicsLearning

  23. 23 Guidelines Insmallgroups,suggest guidelinesneededto collectdata Startingline?Positionoffeetonline Howtomeasurethedistanceofagiantstep Measuringdistanceofstep–beginandend Practicetrials?Bestoutof2tries? Howwilldataberecorded? Othersourcesofvariations? Partners forMathematicsLearning

  24. 24 Decisions Decidehowtorecord thedata Partners forMathematicsLearning

  25. 25 RecordtheData Decideonthemethod ofrecordingdataand collectthedata Whentousecentimeter Whentousehalfcentimetermeasure Willtherebepracticetrials? Shareyourdata Partners forMathematicsLearning

  26. 26 AnalyzetheData Step3: Organize,summarize,describe,and displaythedata;andlookfor patternsinthedata Partners forMathematicsLearning

  27. 27 DataAnalysisVocabulary Mode:thedatavalueoccurringmost frequentlyinadataset Minimum:thelowestnumericalvalue inthedataset Maximum:thelargestnumerical valueinthedataset Range:thedifferencebetweenthe minimumandmaximumvalues Partners forMathematicsLearning

  28. 28 UsesofGraphs Graphsprovideameansfor: Communicatingandclassifyingdata Comparingdataanddisplaying mathematicalrelationshipsthatoften cannotbeeasilyseeninnumericform Integratinggeometricideaswith computationskillsandclassification taskswithnumericunderstandings

  29. 29 LinePlots Quick,simplewaytoorganizedata UsesX’s(orothersamesizedsymbols) onasinglehorizontalaxis Includesallnumberswithintherangeof thedatasetontheaxistoshowholes andtheshapeofthedata Partners forMathematicsLearning

  30. 30 PocketDataShownTwoWays 012345678910 Orderedsetof“pockettowers”showingdata Partners forMathematicsLearning

  31. 31 LinePlot x x x xx xx Howmanytotal pocketsareinthe class? x x xxxxx xxxxxxx 012345678910 Pockets Partners forMathematicsLearning

  32. 32 012345678910 Comparing x x x xx xx xxxxxx xxxxxxxx 012345678910 Partners forMathematicsLearning

  33. 33 LinePlot–Clumps,Gaps,Trends Howmanystarscanyoudrawinone minute?x x x xxx xxxxx xxxxxxxx 343536373839404142434445 Partners forMathematicsLearning

  34. 34 InterpretingtheData InterprettheResults Whatdoyouknowaboutthetypicalnumberof starsdrawninthisclass? Howarethedataspreadout? Whatdoyounoticeabouttheshapeofthe data? Whatmightyoupredictiftheclasscollected dataonanotherday? Partners forMathematicsLearning

  35. 35 BarGraph Horizontalorverticalbars ofuniformwidth Heights(orlengths)areproportionalto thequantitiestheyrepresent Comparesfrequenciesofgrouped, discretequantitiesorofungroupedvalues Axesarelabeledtoindicatevalueor frequency Partners forMathematicsLearning

  36. 36 BarGraph HowManyBooksReadThisYear? 4 3 2 1 0 NumberofStudents 1 2 3 4 5 NumberofBooksRead

  37. 37 AnalyzetheData Representingthedatainorderto identifypatternsofvariationinthedata Mannerofrepresentationdependsonwhy thedatahavebeencollectedandwhat typeofdatahavebeencollected Graphicaldisplaysprovidevisual descriptionsofvariabilityindata(clusters, outliers)andwaystoanalyzethedata (range,median,mode)

  38. 38 AnalyzingData Eachgroupwillcreatealine plotandabargraphoftheclassdata Howdoesthedatarelatetoyour question? Describethe“shapeofthedata” Howarethedataspreadout? Arethereanycluster?Gaps? Arethereanyunusualdatavalues? Partners forMathematicsLearning

  39. 39 AnalyzeandInterpret: Interprettheresults Relatetheanalysestothe investigationquestion Drawandjustify conclusions Communicatetheresults andconclusions Partners forMathematicsLearning

  40. 40 InterpretResults Whatdoyounoticeaboutthedistribution of“GiantStep”data?” Arethereanyclusters?Gaps?Unusual datavalues? Whatmightyousayistypical?Other predictions? Partners forMathematicsLearning

  41. 41 CompareRepresentations Discussthedifferentaspectsofthedata shownbythelineplotandthebargraph Whyisitimportantfor studentstocompare representationsofdata? Partners forMathematicsLearning

  42. 42 ConnectingDataandMeasurement HowLongisOurGiantStep? Wherearetheconnections tomeasurement? Iteration Partitioning Transitivity CompensatoryPrinciple Partners forMathematicsLearning

  43. 43 Extensions Howfarcanyou“frog”jump? Howfarcanyou“rabbit”jump? Partners forMathematicsLearning

  44. 44 IfYouHoppedLikeaFrog Ifyouhoppedlikeafrog, youcouldjumpfrom homeplatetofirstplate inonemightyleap Partners forMathematicsLearning

  45. 45 MysteryData Whatmightthegraphbelowshow? x x xx xx xxxx xxxxx xxxxxxxx 012345678 Partners forMathematicsLearning

  46. 46 MysteryData Chooseoneofthelineplots Explainwhatthedatacouldrepresent withabriefstory Usethedatainthegraphyouchooseto createabargraph Titleandlabelthegraphappropriately Partners forMathematicsLearning

  47. 47 ProcessisImportant Processisasmuchapartofdoing mathematicsasthecontentitself ReviewtheEssential Standardsfor Statistics Identifyexperiences thatwillsupport studentsinattaining datasense Partners forMathematicsLearning

  48. 48 “Theemphasisonworking withdataentailsstudents’ meetingnewideasand proceduresasthey progressthroughthe gradesratherthanrevisiting thesameactivitiesandtopics” NCTM,2000 Partners forMathematicsLearning

  49. 49 DPIMathematicsStaff EverlyBroadway,ChiefConsultant ReneeCunninghamKittyRutherford RobinBarbourMaryH.Russell CarmellaFairJohannahMaynor AmySmith PartnersforMathematicsLearningisaMathematics-Science PartnershipProjectfundedbytheNCDepartmentofPublicInstruction. Permissionisgrantedfortheuseofthesematerialsinprofessional developmentinNorthCarolinaPartnersschooldistricts. Partners forMathematicsLearning

  50. 50 PMLDisseminationConsultants SusanAllman JuliaCazin RuafikaCobb AnnaCorbett GailCotton JeanetteCox LeanneDaughtry LisaDavis RyanDougherty ShakilaFaqih PatriciaEssick DonnaGodley CaraGordon TeryGunter BarbaraHardy KathyHarris JulieKolb ReneeMatney TinaMcSwain MarilynMichue AmandaNorthrup KayonnaPitchford RonPowell SusanRiddle JudithRucker ShanaRunge YolandaSawyer PennyShockley PatSickles NancyTeague MichelleTucker KanekaTurner BobVorbroker JanWessell DanielWicks CarolWilliams StacyWozny Partners forMathematicsLearning

More Related