1 / 34

PROBABILIDADES

PROBABILIDADES. (Adaptación). Prof. José Mardones Cuevas E-mail: cumarojo@yahoo.com. Situación problemática: Yolanda y Alberto están jugando con un dado cuyas caras están numeradas del 1 al 6. Pero Alberto es muy tramposo y ha cambiado el dado por otro que tiene en todas las caras el 6.

roland
Download Presentation

PROBABILIDADES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROBABILIDADES (Adaptación) Prof. José Mardones Cuevas E-mail: cumarojo@yahoo.com

  2. Situación problemática: Yolanda y Alberto están jugando con un dado cuyas caras están numeradas del 1 al 6. Pero Alberto es muy tramposo y ha cambiado el dado por otro que tiene en todas las caras el 6. Cuando lance Yolanda su dado, ¿podremos predecir qué número saldrá?. Cuando lance Alberto su dado, ¿podremos predecir qué número saldrá?.

  3. El experimento de Yolanda es de azar, puesto que no podemospredecir su resultado. El experimento de Alberto no es de azar, puesto que podemos predecir su resultado.

  4. Un experimento es de AZAR si no se puede predecir su resultado. Se llaman EXPERIMENTOS ALEATORIOS los que dan lugar a experimentos de azar.

  5. Ejemplos de Experimentos Aleatorios E1. Se lanza un dado dos veces y se anota el número que sale en la cara superior en ambos lanzamientos. E2. Se analizan muestras de tumores , en un laboratorio, para ver si son benignos o malignos. E3. Se cuenta el número de lápices defectuosos fabricados diariamente. E4. Se mide la resistencia eléctrica de un alambre de cobre.

  6. Al conjunto de todos los resultados que pueden obtenerse al realizar un experimento aleatorio se le llama ESPACIO MUESTRAL y se denota por S ó Ω.

  7. Al lanzar una moneda ¿qué es más probable obtener? Al lanzar un dado ¿ es más probable obtener un 2 ó 6? Si en una caja hay cuatro fichas rojas y cuatro azules ¿es más probable sacar una ficha roja o una ficha azul?

  8. Si dos resultados de un experimento aleatorio tienen la misma posibilidad de ocurrir se dice que son equiprobables.

  9. Cada subconjunto del espacio muestral se llama SUCESO O EVENTO y se denota por A, B, C ... Se lee “A es subconjunto de ”

  10. SUCESO ELEMENTAL Es un suceso que tiene un solo elemento. Ejemplo: al lanzar un dado sale un seis A={6} SUCESO IMPOSIBLE Es un suceso que no puede ocurrir. EJEMPLO: al sacar una carta de un naipe español sale un 10 de diamante.

  11. SUCESO SEGURO Es aquel suceso que puede ocurrir con toda seguridad. EJEMPLO : De una caja que tiene sólo fichas verdes se extrae una ficha verde.

  12. SUCESOS MUTUAMENTE EXCLUYENTES Los sucesos A y B son mutuamente excluyentes si: Ejemplo: De un naipe español A : ”se sacan copas” B : ”se sacan oros” Se lee “A intersectado con B” es igual a vacío. (no hay elementos comunes entre ellos)

  13. A y B son SUCESOS MUTUAMENTE EXCLUYENTES Esto significa que : si ocurre A, no puede ocurrir B y si ocurre B no puede ocurrir A

  14. Es posible hacer una especie de analogía entre el algebra de conjuntos y el algebra de probabilidades.

  15. Definición Clásica de Probabilidad La probabilidad de que ocurra un suceso A, asociado a un espacio muestral Ω, esta dado por: O bien: #: se interpreta como número de elementos que tiene el conjunto.

  16. Observaciones sobre esta definición: 1º Es válida solo para espacios muestrales finitos. 2º Es válida solo para el supuesto de equiprobabilidad. 3º Esta definición se cumple cuando el experimento se realiza un gran número de veces.

  17. El naturalista francés Buffon lanzó una moneda 4.040 veces. Resultando 2.048 caras, una razón de 2.048/4.040 = 0,5069 El matemático inglés John Kerrich, mientras fue prisionero de los alemanes durante la Segunda Guerra Mundial, lanzó una moneda 10.000 veces. Resultando 5.067 caras, una razón de 0,5067 Alrededor de 1900, el estadístico inglés Karl Pearson en un acto sin precedentes lanzó una moneda 24.000 veces. Resultando 12.012 caras, una razón de 0,5005

  18. Propiedades de las probabilidades 1.-

  19. LA PROBABILIDAD DE UN SUCESO SEGURO ES UNO LA PROBABILIDAD DE UN SUCESO IMPOSIBLE ES CERO

  20. Suceso complementario de A 2.- P (A) + P(AC) =1 Ejemplo: La probabilidad de tener a un alumno de sexo femenino en la sala de clases es 0,55, por lo tanto la probabilidad de que no sea de sexo femenino es ... Solución: De la igualdad anterior se obtiene: P(A) + P(AC)= 1 0,55 + P(AC) = 1 P(AC) = 1 - 0,55 = 0,45 Luego, la probabilidad de que no sea de sexo femenino es de un 45%.

  21. 3.- Si A y B son sucesos cualesquiera asociados a un espacio muestral S. La probabilidad de que ocurra el suceso A o el suceso B está dado por:

  22. Ejemplo: En una agencia bancaria hay dos sistemas de alarma A y B. El sistema A funciona en 7 de cada 10 atracos, B funciona en 8 de cada 10 y los dos a la vez lo hacen 6 de cada 10 atracos. ¿Cuál es la probabilidad de que en caso de atraco funcione al menos una de estas alarmas? Solución: Se definen los sucesos A:”El sistema A funciona” B:”El sistema B funciona”

  23. Calculamos las probabilidades correspondientes: Ahora calculamos la probabilidad pedida: Luego, la probabilidad de que en caso de atraco funcione al menos una de estas alarmas es del 90%.

  24. Definición de Probabilidad Condicional Sean A y B dos sucesos asociados a un espacio muestral, la probabilidad de que ocurra el suceso A si ocurrió el suceso B, esta dado por:

  25. y la probabilidad de que ocurra el suceso B si ocurre el suceso A, esta dado por:

  26. EJEMPLO: En una ciudad el 31% de los habitantes tiene un perro como mascota, el 54% tiene un gato y el 12% tiene gato y perro. Se toma al azar a un habitante de esta ciudad , el cual tiene un gato. ¿Cuál es la probabilidad de que tenga un perro?.

  27. La consecuencia más importante de la definición de probabilidad condicional es: Probabilidad de que ocurra el suceso A y B, a la vez. Conocido como TEOREMA DE MULTIPLICACION de probabilidades.

  28. Considera el siguiente ejemplo: 80 buenos 100 artículos 20 defectuosos Se definen los sucesos: A: El primer artículo esta defectuoso B: El segundo artículo esta bueno Calcula la probabilidad de que ocurran los sucesos Ay B. Primero considerando que el muestreo se realiza con reposición y luego que se hace sin reposición.

  29. Si se tienen k sucesos asociados a un espacio muestral (A1, A2, A3,.....Ak). La probabilidad de que ocurran los K sucesos a la vez, esta dado por:

  30. EJEMPLO: Se tienen 14 fichas rojas, 6 blancas, 3 azules. Se definen los siguientes sucesos: A: La primera ficha es roja. B: La segunda ficha es azul. C: La tercera ficha es roja. D: La cuarta ficha es blanca. E: La quinta ficha es roja. Se efectúa muestreo sin reposición . Calcula la probabilidad de que ocurran los sucesos A, B, C, D y E, a la vez.

  31. SUCESOS INDEPENDIENTES Si A y B son dos sucesos asociados a un espacio muestral , estos sucesos son independientes si: • P (A/B) = P(A) • P(B/A)= P(B) • P(A ∩ B) = P(A)  P(B)

  32. Si se tienen k sucesos independientes asociados a un espacio muestral (A1, A2, A3,.....Ak). La probabilidad de que ocurran los K sucesos a la vez, esta dado por: En el ejemplo de las fichas, calcular la probabilidad de que ocurran los sucesos A, B, C, D Y E , si el muestreo se realiza con reposición.

  33. Ejemplo: Las ampolletas son fabricadas por A, B y C. A fabrica el 35% de las ampolletas, B el 20% y C el 45%. Se sabe que el 5%, 3% y 2% de las ampolletas son defectuosas en las fabricas A, B y C, respectivamente. a) Se colocan todas las ampolletas juntas y se escoge una al azar. ¿Cuál es la probabilidad de que la ampolleta esté defectuosa?. b) Se almacenan todas las ampolletas juntas , de tal manera que no es posible distinguir la fábrica de la cual provienen. Se toma una ampolleta al azar, que esta defectuosa. ¿Cuál es la probabilidad de que provenga de la fabrica B?.

  34. HASTA PRONTO...

More Related