1 / 14

Materiały pochodzą z Platformy Edukacyjnej Portalu szkolnictwo.pl

Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl.

sanne
Download Presentation

Materiały pochodzą z Platformy Edukacyjnej Portalu szkolnictwo.pl

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Materiały pochodzą z Platformy Edukacyjnej Portalu www.szkolnictwo.pl Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu www.szkolnictwo.pl mogą być wykorzystywane przez jego Użytkowników wyłącznie w zakresie własnego użytku osobistego oraz do użytku w szkołach podczas zajęć dydaktycznych. Kopiowanie, wprowadzanie zmian, przesyłanie, publiczne odtwarzanie i wszelkie wykorzystywanie tych treści do celów komercyjnych jest niedozwolone. Plik można dowolnie modernizować na potrzeby własne oraz do wykorzystania w szkołach podczas zajęć dydaktycznych.

  2. TWIERDZENIE COSINUSÓW

  3. W dowolnym trójkącie kwadrat dowolnego boku równa się sumie kwadratów dwóch pozostałych boków pomniejszonej o podwojony iloczyn tych boków i cosinusa kąta zawartego między nimi. C γ b a α A β c B Oznaczenia trójkąta w rozwiązywanych zadaniach są takie same: naprzeciw wierzchołka A jest bok długości a; naprzeciw wierzchołka B bok długości b; naprzeciw wierzchołka C jest bok długości c.

  4. Przykład 1. Oblicz długość nieznanego boku w trójkącie ABC jeżeli: a) lub - odpada Długość nieznanego boku równa się

  5. b) lub - odpada Długość nieznanego boku równa się

  6. c) lub - odpada Długość nieznanego boku równa się

  7. Przykład 2. Wyznacz miary kątów trójkąta, wiedząc, że: a=10cm, b=8cm, c=6cm. Obliczamy miarę kąta zawartego między bokami b i c.

  8. Obliczamy miarę kąta zawartego między bokami a i c. Suma miar kątów wewnętrznych w trójkącie wynosi 180°. Obliczamy miarę trzeciego kąta w trójkącie. Odp: Miary kątów wewnętrznych w trójkącie wynoszą: 90°, 53°, 37°.

  9. Przykład 3. Wierzchołki trójkąta ABC mają współrzędne: A=(-2,3) B=(1,0) C=(6,3). Wyznacz długości boków i miary kątów wewnętrznych w trójkącie ABC. A Obliczamy długości boków trójkąta ABC, wykorzystując wzór na długość odcinka. b C c a B

  10. Wykorzystując twierdzenie cosinusów wyznaczamy miary kątów wewnętrznych w trójkącie.

  11. Suma miar kątów wewnętrznych w trójkącie wynosi 180°. Obliczamy miarę trzeciego kąta w trójkącie. Odp: Miary kątów wewnętrznych w trójkącie ABC wynoszą: 45°, 104°, 31°.

  12. Przykład 4. Znajdź kąt między prostymi k i l o równaniach: k: y=x l: y=-x+4 Wyznaczamy współrzędne punktu wspólnego obydwu prostych. Tworzymy układ równań:

  13. Wybieram dowolne dwa punkty – jeden należący do jednej prostej, drugi należący do drugiej prostej. Łącząc te punkty otrzymujemy trójkąt ABC, w którym kąt wewnętrzny α jest jednocześnie kątem między prostymi k i l. Obliczam długości boków trójkąta ABC.

  14. Wykorzystując twierdzenie cosinusów wyznaczamy miarę kąta przy wierzchołku A. Odp: Kąt między prostymi ma miarę 90˚.

More Related