1 / 13

UKURAN DISPERSI (PENYEBARAN DATA)

UKURAN DISPERSI (PENYEBARAN DATA). PENGANTAR. Ukuran Penyebaran Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.

Download Presentation

UKURAN DISPERSI (PENYEBARAN DATA)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UKURAN DISPERSI (PENYEBARAN DATA)

  2. PENGANTAR • Ukuran Penyebaran • Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya. • Ukuran penyebaran membantu mengetahui sejauh mana suatu nilai menyebar dari nilai tengahnya, semakin kecil semakin besar.

  3. PENGGUNAAN UKURAN PENYEBARAN • Rata-rata bunga bank 11,43% per tahun, namun kisaran bunga antar bank dari 7,5% - 12,75% • Rata-rata inflasi Indonesia 1995-2001 sebesar 18,2% dengan kisaran antara 6% - 78% • Harga rata-rata saham Rp 470 per lembar, namun kisaran saham sangat besar dari Rp 50 - Rp 62.500 per lembar

  4. Penyebaran nilai data-data numerik dari nilai rata-rata dinamakan dengan variasi atau penyebaran data. Salah satu cara untuk melakukan pengukuran variasi atau penyebaran data adalah standar deviasi.

  5. Standar Deviasi • Pangkat dua dari standar deviasi dinamakan Varians. Untuk sampel , simpangan baku diberi simbol s Untuk populasi, simpangan baku diberi simbol σ

  6. VARIANS • VARIANS Untuk tingkat ketelitian lebih tinggi digunakan Lebih efektif digunakan

  7. Apabila data dari sampel telah disusun dalam daftar distribusi frekuensi, maka untuk menentukan varians dipakai rumus : n = banyak data fi = frekuensi xi = nilai tengah kelas

  8. contoh Data produksi suatu pabrik selama 80 bulan setelah dibentuk dalam tabel distribusi frekuensi adalah sebagai berikut : Pertanyaan : tentukanlah standar deviasi data tersebut !!

  9. solusi Rumus varians untuk data berkelompok atau setelah disusun dalam distribusi frekuensi adalah Dan standar deviasi adalah akar kuadrat dari varians, maka data yang diperoleh disusun menjadi:

  10. Nilai Tengah Kelas Nilai Tengah pangkat 2 Frekuensi data Frekuensi x Nilai tengah Frekuensi x Nilai tengah pangkat dua Jumlah fi.xi2 Jumlah fi.xi Banyak Data

  11. Selanjutnya :

  12. varians Standar deviasi

  13. TUGAS Dilakukan pengukuran suhu (dalam derajat Celcius) 40 jenis pipa yang mengalirkan gas pada pengeboran lepas pantai dengan data sebagai berikut : 68 84 75 82 68 90 62 88 76 93 73 79 88 73 60 93 71 59 85 75 61 65 75 87 74 62 95 78 63 72 66 78 82 75 94 77 69 74 68 60 • Buatlah tabel distribusi frekuensi data tersebut ! • Hitunglah standar deviasi dari data tersebut !

More Related