1 / 12

Die Gaußverteilung

Die Gaußverteilung. Inhalt. Spezielle Verteilungen: Die Gaußverteilung (Normalverteilung) Die Poisson-Verteilung. Die Gauß-Verteilung. Man nimmt mit Gauß an: jede Messung zeigt zufällige Abweichungen von einem unbekannten idealen, wahren Wert, dem „Mittelwert“

shalin
Download Presentation

Die Gaußverteilung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Die Gaußverteilung

  2. Inhalt Spezielle Verteilungen: • Die Gaußverteilung (Normalverteilung) • Die Poisson-Verteilung

  3. Die Gauß-Verteilung Man nimmt mit Gauß an: • jede Messung zeigt zufällige Abweichungen von einem unbekannten idealen, wahren Wert, dem „Mittelwert“ • Die Anzahl der Messwerte mit zunehmendem Abstand vom idealen Wert nimmt gemäß der Gauß-Verteilung ab • Gaußkurve mit μ = 3, σ = 1

  4. Die Gaußverteilung φ(x) Mittelwert der Messungen μ= 0, Standard-abweichung σ= 1 Die Standard-abweichung zeigt die halbe Breite der Gaußkurve bei 60% ihrer max. Höhe Standard-abweichung σ Mittelwert µ Die Gauß-Verteilung ist durch zwei Parameter definiert: Den Mittelwert μ der Messungen und deren Standardabweichung σ

  5. Gaußverteilung φ(x)und Wahrscheinlichkeiten, Messwerte x mit (µ - σ) < x < (µ + σ) zu erhalten Mittelwert der Messungen μ= 0, Standard-abweichung σ= 1 Standard-abweichung σ Diese Fläche zeigt die Wahrscheinlichkeit… Mittelwert µ …. einen Wert zwischen (µ - σ) und (µ + σ) zu messen. Sie entspricht 68% der gesamten Fläche unter der Gaußkurve

  6. Gaußverteilung φ(x)und Wahrscheinlichkeiten, Messwerte x mit (µ - 2σ) < x < (µ + 2σ) zu erhalten Mittelwert der Messungen μ= 0, Standard-abweichung σ= 1 Standard-abweichung σ Diese Fläche zeigt die Wahrscheinlichkeit… Mittelwert µ …. einen Wert zwischen (µ - 2σ) und (µ + 2σ) zu messen. Sie entspricht 95% der gesamten Fläche unter der Gaußkurve

  7. Gaußverteilung φ(x)und Wahrscheinlichkeiten, Messwerte x mit (µ - 3σ) < x < (µ + 3σ) zu erhalten Mittelwert der Messungen μ= 0, Standard-abweichung σ= 1 Standard-abweichung σ Diese Fläche zeigt die Wahrscheinlichkeit… Mittelwert µ …. einen Wert zwischen (µ - 3σ) und (µ + 3σ) zu messen. Sie entspricht 99,7% der gesamten Fläche unter der Gaußkurve

  8. Wahrscheinlichkeiten, Messwerte innerhalb eines Intervalls von ±1, ±2, ±3 Standardabweichungen um den Mittelwert zu erhalten Beispiel: Bei 1000-facher Wiederholung der gleichen Messung sind 997 Messwerte innerhalb eines Intervalls der Breite von ± drei Standard-Abweichungen um den Mittelwert zu erwarten, nur 3 mit einem größeren Abstand

  9. Standardabweichung der Messwerte Bei Normal-verteilten Daten ist die Standardabweichung σein Maß für die Wahrscheinlichkeit, in einer weiteren Messung einen Messwert im Intervall ±σ um den Mittelwert μ zu erhalten

  10. Standardabweichung des Mittelwerts Folge: Um die Standardabweichung des Mittelwerts auf die Hälfte zu reduzieren, ist die vierfache Anzahl von Beobachtungen erforderlich

  11. Zusammenfassung Bei Normal-verteilten Messwerten gilt: • Legt man ein Intervall der Breite ±N·σ um den Mittelwert µ, dann erwartet man bei mehrfacher Wiederholung der Messung für • N=1 68 % • N=2 95 % • N=3 99,7 % der Messwerte innerhalb, den Rest außerhalb des Intervalls • Die Standardabweichung σµdes Mittelwerts ist • σµ = σ / Wurzel(N) Das heißt, umσµ auf die Hälfte zu reduzieren bedarf es der 4-fachen Anzahl der Messwerte!

  12. Q: Welche medizinisch relevante Information zeigt die Folge der Histogramme? finis • Quelle: http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000002900/1_Kapitel_1.pdf A: Bei etwa konstantem Mittelwert steigt die Breite der Verteilung: Das heißt, sie zunehmend ältere, aber auch jüngere Patienten erhalten Hüftendoprothesen

More Related