1 / 15

Fungsi linier

Fungsi linier. Sri Hermawati.

sloan
Download Presentation

Fungsi linier

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fungsi linier Sri Hermawati

  2. 1. Injektif ( Satu-satu)Fungsi f:AB adalahfungsiinjektifapabilasetiapduaelemen yang berlainandi A akandipetakanpadaduaelemen yang berbedadi B. MisalnyaFungsi f(x) = 2x adalahfungsisatu-satudan f(x) = x2bukansuatufungsisatu-satusebab f(-2) = f(2). JENIS-JENIS FUNGSI 2. Surjektif (Onto)Fungsi f: AB maka apabila f(A)  B dikenal fungsi into. Jika f(A) = B maka f adalah suatu fungsi surjektif. Fungsi f(x) = x2 bukan fungsi yang onto 3. Bijektif (Korespondensi Satu-satu)Apabila f: A B merupakan fungsi injektif dan surjektif maka “f adalah fungsi yang bijektif”

  3. FUNGSI LINEAR Contoh : Suatufungsi linear ditentukanoleh y = 4x – 2 dengandaerahasal • Buattabeltitik-titikyangmemenuhipersamaandiatas . • Gambarlahtitik-titiktersebutdalam diagram Cartesius. • Tentukantitikpotonggrafikdengansumbu X dansumbu Y. {x \-1 x 2, x R}. Jawab a. Ambil sembarang titik pada domain X -1 0 1 2 Y = 4x-2 -6 -2 2 6 Jadi, grafik fungsi melalui titik-titik (-1,-6), (0,-2), (1,2), (2,6)

  4. FUNGSI LINEAR Y c. Titikpotongdengansumbu x ( y= 0 ) y = 4x – 2 0 = 4x - 2 2 = 4x x = b. 6 • 2 • Jadi titik potong dengan sumbu X adalah ( ½,0) X 1 2 O Titik potong dengan sumbu Y ( x = 0 ) y = 4x – 2 y = 4(0) – 2 y = -2 Jadi titik potong dengan sumbu Y adalah (0,-2) -2 -1 • -2 • -6

  5. GRADIEN DAN PERSAMAAN GARIS LURUS 3. Gradien Persamaan Garis Lurus Cara menentukan gradien : (i). Persamaan bentuk y = mx+c, gradiennya adalah m. (ii). Persamaan bentuk ax+by+c=0 atau ax+by=-c adalah m= (iii). Persamaan garis lurus melalui dua titik (x1,y1) dan (x2,y2), gradiennya adalah m = • Contoh : • Tentukan gradien persamaan garis berikut • a. y = 3x – 4 • b. 2x – 5y = 7 • 2. Tentukan gradien garis yang melalui pasangan titik (-2,3) dan (1,6)

  6. GRADIEN DAN PERSAMAAN GARIS LURUS 4. Menentukan Persamaan Garis Lurus • Persamaan garis melalui sebuah titik (x1,y1) dan gradien m adalah y – y1 = m ( x – x1 ) • Persamaan garis melalui dua titik (x1,y1) dan (x2,y2) adalah = Contoh 1 : Tentukan persamaan garis yang melalui titik ( -2, 1 ) dan gradien -2 Jawab : y – y1 = m ( x – x1 ) y – 1 = -2 ( x – (-2)) y - 1 = -2x – 4 y = -2x - 3

  7. KEDUDUKAN DUA GARIS 5. Kedudukan dua garis lurus • Dua garis saling berpotongan jika m1 ≠ m2 • Dua garis saling sejajar jika m1 = m2 • Dua garis saling tegak lurus jika m1. m2 = -1 atau m1 = - • Contoh : • Tentukan persamaan garis lurus yang melalui titik (2,-3) dan sejajar dengan garis x – 2y + 3 = 0 • Tentukan persamaan garis lurus yang melalui titik (-3,5) dan tegak lurus pada 6x – 3y – 10 = 0

  8. KEDUDUKAN DUA GARIS Jawab : 1. Diketahuipersamaangaris x – 2y + 3 = 0 maka Persamaangarismelaluititik (2,-3) dangradienadalah y – y1 = m ( x – x1) y + 3 = ½ ( x – 2 ) y + 3 = ½ x – 1 2y + 6 = x – 2 x – 2y – 8 = 0 Jadipersamaangarislurus yang sejajardengangaris x – 2y + 3 = 0 danmelaluititik (2,-3) adalah x – 2y – 8 = 0

  9. FUNGSI KUADRAT BerdasarkanNilaiDiskriminan (D) Nilaidiskriminansuatupersamaankuadratadalah D = b2 – 4ac Hubunganantara D dengantitikpotonggrafikdengansumbu X • Jika D > 0 makagrafikmemotongsumbu X diduatitik yang berbeda. • Jika D = 0 makagrafikmenyinggungsumbu X disebuahtitik. • Jika D < 0 makagrafiktidakmemotongdantidakmenyinggungsumbu X.

  10. KedudukanGrafikFungsiKuadratTerhadapSumbu X FUNGSI KUADRAT (ii) (iii) X X X X (v) (vi) (iv) X (i) a > 0 D = 0 a > 0 D < 0 a > 0 D > 0 X a < 0 D = 0 a < 0 D > 0 a < 0 D < 0

  11. MENYUSUN PERSAMAAN KUADRAT Persamaanfungsikuadrat f(x) = ax2 + bx + c apabiladiketahuiduatitikpotongterhadapsumbu X dansatutitiklainnyadapatditentukandenganrumusberikut. Contoh : Tentukanpersamaanfungsikuadrat yang memotongsumbu X dititik A (1,0), B(-3,0), danmemotongsumbu Y dititik (0,3)

  12. MENYUSUN PERSAAMAAN KUADRAT Jawab : Titik(1,0) dan (-3,0) disubstitusikanke f(x) menjadi : f(x) = a(x – 1)(x + 3) . . . 1) Kemudiansubsitusikan (0,3) kepersamaan1)menjadi : 3 = a(0 - 1)(x + 3) 3 = -3a a = -1 Persamaanfungsikuadratnyamenjadi : Jadifungsikuadratnyaadalah

  13. MENYUSUN PERSAMAAN FUNGSI KUADRAT Persamaan fungsi kuadrat f(x) = ax2 + bx + c apabila diketahui titik puncak grafik (xp’ yp) dan satu titik lainnya dapat ditentukan dengan rumus berikut.

  14. MENYUSUN PERSAMAAN KUADRAT Contoh : f(x) = a(x – xp)2 + yp(xp , yp) = (-1, 9) f(x) = a(x + 1 )2 + 9 . . . 1) Subsitusikantitik (3,-7) kepersamaan1)menjadi : -7 = a(3 + 1)2 + 9 -16 = 16 a a = 1 Tentukanpersamaanfungsikuadrat yang titikpuncaknya (-1, 9) danmelalui (3, -7) Jawab :

  15. sumber • http://si.itats.ac.id/.../index.php • http://informatika.stei.itb.ac.id/.../Relasi%20dan%20Fun..

More Related