810 likes | 1k Views
CONSTRUCIONES GEOMETRICAS - CÓNICAS. Construcciones elementales. Ejercicio Nº 1.- Elementos de la elipse. Ejercicio Nº2.- Hallar los focos de una elipse conociendo los ejes AB =70 y CD=55. 1.- Trazamos el eje mayor AB =70 mm , por ejemplo.
E N D
CONSTRUCIONES GEOMETRICAS - CÓNICAS Construcciones elementales
Ejercicio Nº2.- Hallar los focos de una elipse conociendo los ejes AB =70 y CD=55.
2.-Trazamos la mediatriz del eje AB, que resulta ser el eje menor.
3.- Con centro en la intersección de los ejes trazamos una de circunferencia de radio 27,5 que nos determina los extremos del eje menor CD.
4.- Con centro en un extremo del eje menor ( en C o en D) trazamos un arco de radio a=35 mm que nos determina los puntos F y F’ que son los focos de la elipse.
Ejercicio Nº 3.-Construcción de una elipse por puntos, de ejes AB=70 mm y el eje menor CD= 50mm.
2.- Con centro en O trazamos una circunferencia de diámetro 50 mm, que nos determina los puntos C y D extremos del eje menor.
3.- Con centro en C trazamos un arco de circunferencia de radio a=35 mm, que nos determinan los focos de la elipse F y F’.
5.- Con centro en los focos trazamos una circunferencia de radio 1B= 16 mm.
6.- Con centro en los focos trazamos un arco de radio 1A, que corta a los anteriores en los punto P -P’ y Q – Q’,que son puntos de la elipse.( los arcos se hace centro uno en un foco y el otro en el otro foco)
7.- Tomamos otros puntos 2 y 3 … los que sean necesario y repetimos el mismo procedimiento. Y obtenemos otros puntos.
Ejercicio Nº 4. Trazado de la elipse por puntos mediante, la circunferencia principal y la de diámetro 2b. Dados los ejes
1.-Se trazan las circunferencias de diámetro 2a y 2b respectivamente.
2.-Se traza un radio cualquiera que corta en T' y T'' a las circunferencias anteriores. Se traza por T' una paralela al eje CD y por T'' la paralela a AB ambas se cortan en T que es un punto de la elipse.
3.- Se repite la operación el numero de veces que se considere necesario y se determinar tantos puntos como de precise.
Ejercicio Nº 5.- Construcción de la elipse por el método de los 12 puntos. Conociendo los ejes. AB y CD. Vemos el dibujo de la circunferencia, el punto M es la mitad del radio de la circunferencia (cuarta parte del lado AB). Unimos E con B y el otro extremo del diámetro con M las rectas se cortan en el punto P un punto de la circunferencia. Podemos unir el diámetro vertical de la misma manera.
1.- Vamos utilizar el mismo procedimiento de la circunferencia para la elipse. Se traza el rectángulo de lados igual a los ejes.
2.- Se dividen los lados en cuatro partes iguales el lado AB el punto M es la cuarta parte y el lado BC el punto N es también la cuarta parte, se procede igual en las otras mitades de los lados.
3.- Se une M con el extremo del eje mayor punto 3 y el otro extremo E con el punto B y nos da el punto P punto de la elipse se repite la operación y tenemos cuatro puntos.
4.- Se une N con el extremo del eje menor punto 6 y el otro extremo punto 12 con el punto C y nos da el punto 4, punto de la elipse.
5.-Se repite la operación en la parte izquierda de la elipse y tenemos otros cuatro puntos.
6.- Con los otros cuatro puntos que faltan y los extremos de los ejes tenemos los doce puntos que unimos y tenemos dibujada la elipse.
Ejercicio Nº5.- Trazado de las asíntotas de la hipérbola Conocidos los vértices A y B y los focos F y F‘.
1º METODO 1.- Por A y B trazamos la perpendicular al eje AB y con centro en O y radio OF=OF’ trazamos un circulo que corta a la perpendicular en los puntos 1 y 2 que unido con O nos da las asíntotas buscadas.
2º METODO 2.- Por F’ trazamos las tangentes a la hipérbola uniendo los puntos de tangencia con O tenemos las asíntotas.
3º METODO 3.- Hallamos el punto medio de OF y trazamos con centro en este punto una circunferencia de diámetro OF que corta a la Cp en los puntos 3 y 4 que son los puntos por donde pasan las asíntotas.
Ejercicio Nº 6.- Construcción de la hipérbola por puntos. Conocidos a=20 y b=15 mm.Calculamos la distancia focal c
1.- Sobre el eje real marcamos los focos F y F’ y el eje real A-B.
2.- Sobre el eje real a partir de F o F’ en este caso a partir de F tomamos unos puntos cualesquiera 1, 2, 3,…
3.- Tomamos la medida 1B =(11) y con centro en F trazamos un arco de circunferencia de radio 1B=11 mm.
4.- Tomamos la medida 1A =(51) y con centro en F’ trazamos un arco de circunferencia de radio 1A=51 mm. Que corta al otro circulo en los puntos M y P que son dos puntos de la hipérbola.
5.- Se repite el procedimiento pero a la inversa y hallamos los puntos M y Q.
6.- Se repite en procedimiento para los puntos 2, 3, … y se obtienen otros puntos de la hipérbola hasta que consideremos suficientes.
Ejercicio Nº 7.- Construcción de una hipérbola por haces proyectivos dados el ejes AB=30 mm y la distancia focal FF'= 40 mm.
1.- Se determina un punto cualquiera P de la curva, por el método de los puntos.
3.- Se dividen en partes iguales los segmentos MP y NP y se unen el extremo Bdel eje mayor dado y con el otro extremo A de la forma que vemos, los puntos de intersección son puntos de la hipérbola.
5.- Por la parte inferior se puede repetir los mismo ó se llevan sobre la prolongación de NPlos simétricos de 1, 2, 3, 4 y se unen con el punto B dela formaque como se ve en la Fig..
6.- Por la parte izquierda se vuelve repetir el mismo procedimiento y tenemos la hipérbola.
Ejercicio Nº 8.- Construcción de una hipérbola por envolventes dados los focos y los vértices A y B.
2.- Se trazan las asíntotas, por A levantamos una perpendicular al eje AB, trazamos un arco de centro O y radio OF que corta a la perpendicular anterior en el punto M y Npor el que pasa la asíntota t’ y t, las asíntotas son simétricas AM = AN
3.- Unimos M y N con O y tenemos las asíntotas t’ y t. (vemos la posición de a, b y c).