1 / 18

IZGRADNJA POJMOVA U POČETNOJ NASTAVI MATEMATIKE

IZGRADNJA POJMOVA U POČETNOJ NASTAVI MATEMATIKE. GRAĐA MATEMATIKE. Matematika je znanost koja je izgrađena na zakonima i principima logike aksiomatska građa: polazi od osnovnih pojmova koje ne definiramo i ne opisujemo, već ih smatramo intuitivno poznatima

valiant
Download Presentation

IZGRADNJA POJMOVA U POČETNOJ NASTAVI MATEMATIKE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IZGRADNJA POJMOVA U POČETNOJNASTAVI MATEMATIKE

  2. GRAĐA MATEMATIKE • Matematika je znanost koja je izgrađena na zakonima i principima logike • aksiomatska građa: polazi od osnovnih pojmova koje ne definiramo i ne opisujemo, već ih smatramo intuitivno poznatima • O tim pojmovima postavljamo neke osnovne tvrdnje – aksiome, koje ne dokazujemo ni ne provjeravamo već ih uzimamo ‘a priori’ poznatima • Osnovni pojam u matematici ne mora biti isto što i osnovni pojam u nastavi matematike. Što je dob učenika niža, to je razlika izraženija • Osnovni su pojmovi za nastavu matematike geometrijska 3D tijela, a točka je izvedeni pojam; u matematici su geometrijska tijela složeni objekti, a točka koja je jednodimenzionalna je osnovni pojam.

  3. Iz osnovnih se pojmova dalje definicijama izgrađuju novi matematički pojmovi • U definiciji razlikujemo pojam koji se definira „definiendum“, od pojma pomoću kojeg se definira „definiens“ • O novim se pojmovima izriču neke tvrdnje – teoremi, čija se istinitost obavezno dokazuje iz aksioma i prethodno dokazanih teorema • Iz pojedinih teorema mogu se dobivati manje tvrdnje – korolari čija istinitost slijedi direktno iz istinitosti teorema.

  4. MATEMATIČKI POJAM • Pojam je misao o biti nekog stvarnog ili zamišljenog predmeta, dok je činjenica iskustveno utvrđeni objektivno postojeći odnos među predmetima, predmet ili podatak.

  5. U matematici se pretežno usvajaju pojmovi, za razliku od drugih predmeta u kojima se pretežno usvajaju činjenice • Važniji matematički pojmovi su na primjer brojevi, operacije s brojevima, puno, malo, dugo, kratko, okruglo, ravno, zaobljeno; relacije-više, manje, jednako, dulje, kraće, jednake duljine,…

  6. SVOJSTVA (OBILJEŽJA) OBJEKTA • svaki objekt ima svojstva – ta su svojstva često matematički pojmovi • kvalitativna i kvantitativna svojstva • pretpostavka formiranja matematičkog pojma je sposobnost razlikovanja objekta od svojstva objekta. • kvalitativna svojstva; boja, oblik, veličina, miris … kvantitativna: brojnost, više, manje…

  7. POJAM BROJA • učenik može usvajati pojam prirodnog broja uočavajući objekte – skupove, i razumijevajući svojstvo tih objekata – brojnost elemenata u njima • Puno je teže shvatiti razliku između skupa i njegovog pojma brojnosti, nego razliku između skupa i njegovih kvalitativnih obilježja kao što su boja, oblik, raspored elemenata i sl. • kvalitativna se svojstva upoznaju perceptivnim putem, a brojnost isključivo misaonim aktivnostima. Učitelj treba provjeriti raspolažu li svi učenici sposobnošću razlikovanja objekta od njegova svojstva

  8. FAZE INTELEKTUALNOG (KOGNITIVNOG) RAZVOJA DJETETA • Pri učenju matematike treba voditi računa o psihološkom utemeljenju procesa učenja i usvajanja osnovnih matematičkih pojmova jer o tome ovisi metodičko oblikovanje nastavnog procesa • Što je intelektualna razvijenost učenika manja, to je razina metodičke prerade sadržaja veća • Intelektualni razvoj odvija se u etapama, koje jedna drugu slijede u nepromjenjivom redoslijedu, ali svako je dijete specifično u pogledu trajanja (i početku) pojedine etape. • J. Piaget pokazao je da dijete prolazi kroz niz faza u kojima usvajaju mnoge pojmove načinom karakterističnim za dano razdoblje

  9. PIAGETOVE RAZVOJNE FAZE • 1. senzorno-motoričko razdoblje (od rođenja do 18 mj) = dijete upoznaje svijet promatranjem, osjećanjem, diranjem i sl. Predmet postoji jedino ako ga može vidjeti i dodirnuti. (dijeli se na stadij refleksa-novorođrnčad; stadij percepcije- male bebe koje promatraju i slušaju…, stadij senzo-motoričke inteligencije-manipuliraju objektima iz okoline, dodiruju ih…) • 2.intuitivno razdoblje (od 18 mj. do 7g.) = pojava govora, dijete uočava sličnosti i razlike među predmetima, ali je uvjereno da je svijet onakav kako ga vidi i osjeća. Sedam razbacanih kuglica za dijete je više nego ako su skupljene na hrpu. Viđenje svijeta je egocentrično.

  10. PIAGETOVE RAZVOJNE FAZE • 3. konkretno-operacijsko razdoblje (od 7 do 12g.) = sve češća primjena logike u stvarnim i zamišljenim situacijama. Dijete je sposobno logički misliti, ali uz uvjet da se mišljenje potkrepljuje perceptivnim podacima. Operativno mišljenje može ispravno funkcionirati samo ako se zasniva na aktivnostima s konkretnim objektima. Počinje shvaćati invarijantnost (nepromjenjivost) svojstava veličina i objekata (brojnost skupa se ne mijenja ako promijenimo raspored elemenata u skupu). Počinje stvarati tranzitivne zaključke (ako je A=B i B=C onda je A=C) • 4. formalno-operacijsko razdoblje (od 12g.) = sposobnost dokazivanja apstraktnih postavki i zaključivanje isključivo na temelju logike

  11. TEMELJNE AKTIVNOSTI ZA USVAJANJE MATEMATIČKIH POJMOVA • Da bi dijete usvajalo početne matematičke sadržaje treba biti sposobno vršiti neke matematičke aktivnosti neophodne za usvajanje matematičkih pojmova • temeljne aktivnosti: razvijaju se i prije djetetova polaska u školu, a učitelj ih koristi da izgradi nove matematičke pojmove.

  12. PRIDRUŽIVANJE • povezivanje dva objekta prema nekom zajedničkom svojstvu • objektu pridružuje isti objekt; objektu pridružuje riječ; objektu pridružuje objekt s istim svojstvom… • U pridruživanju je potrebno izabrati predmete (iskustva) s traženim svojstvom, a odbaciti one koji ga nemaju. • Npr. ovaj je predmet zelen, a ovaj ne; ovaj predmet ima oblik kvadra, a ovaj ne; ovi skupovi imaju jednako elemenata, ovi štapići imaju jednaku duljinu… • Pridruživanjem djeca uče pravilno upotrebljavati (matematički) jezik.

  13. RAZVRSTAVANJE • aktivnost u kojoj se neki skup rastavlja na podskupove sa zajedničkim svojstvima (boja, veličina, oblik, brojnost i sl.) • složenija od pridruživanja iako se sve aktivnosti pridruživanja mogu proširiti na razvrstavanje. • važno je razumjeti načelo po kojem se predmeti razvrstavaju. • Npr. predmete nekog skupa treba razvrstati po jednom ili više svojstava

  14. SPARIVANJE • pridruživanje „jedan na jedan“ - funkcija • koriti se kod kvantitativnih usporedbi (čega ima više, studenata ili stolica?) • aktivnost važna za razumijevanje brojeva • Uspoređujući dva skupa ne moramo brojati njihove elemente, već ih sparujemo.

  15. NIZANJE • uvođenje reda (redoslijeda) među elemente nekog skupa • Izgrađuju se pojmovi prvi, do, ispred, iza, između, posljednji i sl. • uočava se uzorak po kojem se elementi nižu (pravilnosti ponavljanja, od najvećeg prema najmanjem…)

  16. USVAJANJE APSTRAKTNIH MATEMATIČKIH SADRŽAJA • Matematika je apstraktna znanost, njeni su pojmovi apstraktni. • maleno dijete upoznaje svijet tako da gleda, osjeća i ispituje fizičke predmete. Uskoro počinje prepoznavati riječi kojima te predmete označavamo (izgovorena riječ je apstrakcija stvarnosti), a kasnije počinje prepoznavati i slike tih predmeta. Na kraju prepoznaje pismene znakove kojima ih prikazujemo (npr. napisanu riječ koja predstavlja pojam ili simbol) • Slično se razvijaju i djetetova matematička iskustva

  17. SLIJED USVAJANA MATEMATIČKIH POJMOVA • I – iskustvo fizičkih predmeta • G – govorni jezik kojim opisuje iskustvo • S – slike koje prikazuju iskustvo • Z – pisani znakovi koji prikazuju iskustvo • Svako učenje matematike u nižim razredima mora krenuti od I – iskustva i G – govornog jezika. Tek poslije dolaze slike S (u udžbeniku) i učenje znakova Z. • Usvajanje apstraktnih sadržaja odvija se u I-G-S-Z slijedu.

More Related