560 likes | 1.11k Views
PARTNERS for Mathematics Learning. Grade 8 Module 4. Partners for Mathematics Learning. 2. Module 4 Proportional Reasoning. Partners for Mathematics Learning. 3. Which Is a Better Buy? 12 tickets for $15.00 or 20 tickets for $23.00?. Partners for Mathematics Learning. 4.
E N D
PARTNERS forMathematicsLearning Grade8 Module4 Partners forMathematicsLearning
2 Module4 ProportionalReasoning Partners forMathematicsLearning
3 WhichIsaBetterBuy? 12ticketsfor$15.00or20ticketsfor $23.00? Partners forMathematicsLearning
4 WhichisaBetterBuy? Whatisyouranswer? Howdidyouobtainyouranswer? Whataresomestrategiesthatyour studentsmightuse? Partners forMathematicsLearning
5 WhichIsaBetterBuy? Ifastudentvalueseachticketasworth $1.00,whatmightthestudentsayabout eachdealusing… Additivereasoning Proportionalreasoning Partners forMathematicsLearning
6 ProportionalThinking Asdifferentwaystothinkaboutproportions areconsideredanddiscussed,teachers shouldhelpstudentsrecognizewhenand howvariouswaysofreasoningabout proportionsmightbeappropriatetosolve problems PSSM,2000 Partners forMathematicsLearning
7 CapstoneoftheCurriculum! “Proportionalreasoninghasbeenreferred toasthecapstonefortheelementary curriculumandthecornerstoneofalgebra andbeyond.” VandeWalle,J.A(2004).ElementaryandMiddleSchool Mathematics:TeachingDevelopmentally.PearsonLearningInc. Partners forMathematicsLearning
8 Amazing–Isn’tIt? “Itisestimatedthatmorethanhalfofthe adultpopulationcannotbeviewedas proportionalthinkers.Thatmeansthatwe donotacquirethehabitsandskillsof proportionalreasoningsimplybygetting older.” VandeWalle,J.A(2004).ElementaryandMiddleSchool Mathematics:TeachingDevelopmentally.PearsonLearningInc. Partners forMathematicsLearning
9 ResearchSays… “Researchindicatesthatinstructioncanhavean effect,especiallyifrulesandalgorithmsfor fractioncomputation,forcomparingratios,and forsolvingproportionsaredelayed.Premature useofrulesencouragesstudentstoapplyrules withoutthinkingand,thus,theabilitytoreason proportionallyoftendoesnotdevelop.” VandeWalle,J.A(2004).ElementaryandMiddleSchool Mathematics:TeachingDevelopmentally.PearsonLearningInc. Partners forMathematicsLearning
10 TeachingEffectively Instructioninsolvingproportionsshouldinclude methodsthathaveastrongintuitivebasis PSSM,2000 Inagroupofstudentswhocansuccessfully applyanalgorithm,howcanyoudistinguish betweenthosewhocanreasonproportionally andthosewhocannot? Partners forMathematicsLearning
11 “OneInchTall”byShelSilverstein Ifyouwereonlyoneinchtall,you’dridea wormtoschool Theteardropofacryingant wouldbeyourswimmingpool. Partners forMathematicsLearning
12 WouldThisBeTrue? Ifyouwereonlyoneinchtall,youcouldwear athimbleonyourhead Partners forMathematicsLearning
13 HowAboutThis? Ifyouwereonlyoneinchtall,itwouldtake aboutamonthtogetdowntothestore Partners forMathematicsLearning
14 Let’sInvestigate! Ifyouwereonlyoneinchtall… Couldyourideawormtoschool? Couldyouwearathimbleonyourhead? Wouldittakeamonthtogettothestore? Partners forMathematicsLearning
15 JustTheFacts,Ma’am! Whatinformationwillyouneedtosolve theseproblems? Partners forMathematicsLearning
16 TimeToInvestigate Partners forMathematicsLearning
17 Let’sTalk Whatareourconclusions? Couldyourideawormtoschool? Couldyouwearathimbleonyourhead? Wouldittakeamonthtogettothestore? Partners forMathematicsLearning
18 IncreasedStudentUnderstanding Problemsthatinvolveconstructingor interpretingscaledrawingsofferstudents opportunitiestouseandincreasetheir knowledgeofsimilarity,ratio,and proportionality PSSM Partners forMathematicsLearning
19 TangramTime! Partners forMathematicsLearning
20 TangramTime! Partners forMathematicsLearning
21 InvestigationandExploration “Studentswholearnedthrough investigationandexplorationwerenot onlymoresuccessfulatgivingcorrect responsestoproportionalreasoning tasksbutalsobetterabletojustify thoseanswers.” Fey,J.T.,Miller,J.L.(2000).ProportionalReasoning.Mathematics TeachingintheMiddleSchool.5(5),312 Partners forMathematicsLearning
22 ContinuingOurInvestigations… Partners forMathematicsLearning
23 TheSierpinskiTriangleActivity Partners forMathematicsLearning
24 TheSierpinskiTriangle STAGE0 Usingdotpaper,constructanequilateral triangleofsidelength16 Whatistheareaofthistriangle? Partners forMathematicsLearning
25 TheSierpinskiTriangle STAGE1 Markthemidpointofeachsideofthe triangle Jointhemidpointsto form4smallertriangles Partners forMathematicsLearning
26 TheSierpinskiTriangle STAGE1 Determinesomerelationshipsbetweenthenew trianglesandtheoriginaltriangle Similarity? Congruence? Whatistheareaofeachnewtriangle? Whatfractionoftheoriginaltriangledoeseach newtrianglerepresent? Partners forMathematicsLearning
27 TheSierpinskiTriangle STAGE1 Remove(shade)thecentertriangle Whatfractionoftheoriginal areaisnotshaded? Updatethechart Partners forMathematicsLearning
28 TheSierpinskiTriangle STAGE2 Bisecteachsideofthe“new”(unshaded) triangles Jointhemidpointsineachtoformatotal of12smallertriangles(16ifyoudivided thelargershadedtriangle) Partners forMathematicsLearning
29 TheSierpinskiTriangle STAGE2 Determinesomerelationships betweenthenewtriangles andtheoriginaltriangle Remove(shade)thecentertriangles Whatistheareaofthenewtriangle? Whatfractionoftheoriginalareaisnot shaded? Partners forMathematicsLearning
30 TheSierpinskiTriangle STAGE3 Bisecteachsideofthe“new”(unshaded) triangles Jointhemidpointsineachtoformatotal of_?_smallertriangles Partners forMathematicsLearning
31 TheSierpinskiTriangle STAGE3 Remove(shade)thecentertriangles Whatfractionoftheoriginalareaisnot shaded? Updatethechart Partners forMathematicsLearning
32 TheSierpinskiTriangle Isanexampleofafractal(aself-similar object) Ingeneral,afractalisageometricobject whosepartsarereduced-sizedcopiesof thewhole Givesomereal-lifeexamplesoffractals Partners forMathematicsLearning
33 TheSierpinskiTriangle Determineamathematicalrelationshipfor Thenumberoftrianglesateachstage Theareaofeachnewtriangle Thefractionoftheoriginalareathateachnew trianglerepresents Thefractionoftheoriginalareathatisnot shaded Partners forMathematicsLearning
34 TheSierpinskiTriangle Whatpatternsemerge? Whatiftheiterationscontinued… Whatwouldbetheareaofoneofthesmallest trianglesinthe4thiteration? Whatfractionoftheoriginaltrianglewouldnot beshadedatthisstage? Whataboutthe100thiteration? Whatishappeningtotheareaoftheun- shadedregionasthenumberofiterations grows? Partners forMathematicsLearning
35 TheSierpinskiTriangle Whatwillyourstudentsthinkofthis activity? Whatmathematicalconceptsarecovered inthisactivity? Willyougivethisactivityatry? Partners forMathematicsLearning
36 TheKochSnowflake Partners forMathematicsLearning
37 TheKochSnowflake STAGE0 Usingdotpaper,constructanequilateral triangleofsidelength9 Whatistheperimeterofthistriangle? Partners forMathematicsLearning
38 TheKochSnowflake STAGE1 Trisecteachsideofthetriangle Remove(erase)themiddlesegmentof eachside Partners forMathematicsLearning
39 TheKochSnowflake STAGE1 Createanewequilateraltriangleoneach sideoftheoriginaltrianglebyaddingtwo segmentsofthesamelengthasthe erasedsegmentontotheside Theerasedsegmentwillbethebaseof thenewequilateraltriangle Partners forMathematicsLearning
40 TheKochSnowflake Thenewshapewillbea six-pointedstar Whatistheperimeter ofthestar? Partners forMathematicsLearning
41 TheKochSnowflake STAGE2 ReiteratetheprocessdescribedinStage1 Firsttrisectofeachsideofthetriangle Remove(erase)themiddlesegmentof eachside Partners forMathematicsLearning
42 TheKochSnowflake STAGE2 Createanewequilateraltriangleoneach sideofthe6-pointedstarbyaddingtwo segmentsofthesamelengthasthe erasedsegmentontotheside Theerasedsegmentwillbethebaseof thenewequilateraltriangle Partners forMathematicsLearning
43 TheKochSnowflake STAGE2 Thenewfigureshouldlooklikea snowflake Whatistheperimeterofthenewfigure? Partners forMathematicsLearning
44 TheKochSnowflake Lookatthevalueoftheperimeter ateachstage Isthereapatternhere? Theperimeterofeachfigureis__?__ timestheperimeterofthepreviousfigure Partners forMathematicsLearning
45 TheKochSnowflake Howmanyiterationswouldittaketoobtain aperimeterof100units?(orascloseto 100asyoucanget) Asyouperformmoreandmoreiterations, whathappenstothevalueoftheperimeter andthearea? Partners forMathematicsLearning
46 TheKochSnowflake Aninfiniteperimeterenclosesafinitearea …nowthat’samazing! Whatwillyourstudentsthinkofthisactivity? Willyougivethisactivityatry? Partners forMathematicsLearning
47 SummarizingtheWork Whatmathematicalconceptsandskillsare addressedintheseactivities? Understandingofandcomputationwithreal numbers Understandingofanduseofmeasurement concepts Understandofandusepropertiesand relationshipsingeometry Partners forMathematicsLearning
48 ProportionalReasoningActivities OneInchTall Tangrams SierpinskiTriangle KochSnowflake Whatareyourfavoriteproportional reasoningactivities? Partners forMathematicsLearning
49 WhatBigIdeasAreAddressed? Fluencywithdifferenttypesofreasoning (quantitative,additive,multiplicative, proportional)isnecessaryformathematical development Fluency(accuracy,efficiency,flexibility) usingoperationswithrationalnumbers becomessolidifiedinthemiddlegrades Partners forMathematicsLearning
50 …BIGIdeas Twodimensionalfiguresareviewedinthe rectangularcoordinateplaneand transformationsoftwodimensionalfigures withintheplanemayproducefiguresthat aresimilarand/orcongruenttotheoriginal figure Partners forMathematicsLearning