1 / 36

LOGARITMA

LOGARITMA. Pengertian Logaritma. P log a = m artinya a = p m Keterangan: p disebut bilangan pokok a disebut bilangan logaritma atau numerus dengan a > 0 m disebut hasil logaritma atau eksponen dari basis. Logaritma dengan basis 10.

andie
Download Presentation

LOGARITMA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LOGARITMA www.banksoalmatematika.com

  2. Pengertian Logaritma Plog a = m artinya a = pm Keterangan: p disebut bilangan pokok a disebut bilangan logaritma atau numerus dengan a > 0 m disebut hasil logaritma atau eksponen dari basis www.banksoalmatematika.com

  3. Logaritma dengan basis 10 • Pada bentuk plog a = m, maka: 10log a = m cukup ditulis log a = m. • Basis 10 pada logaritma tidak perlu dituliskan. • Contoh: 10log 3  dituliskan log 3 10log 5  dituliskan log 5 www.banksoalmatematika.com

  4. m m = plog (a) n n 4. plog plog a = Sifat-sifat Logaritma 1. plog (a x b) = plog a + plog b 2. plog (a : b) = plog a - plog b 3. plog (a)n = n x plog a www.banksoalmatematika.com

  5. Contoh Soal www.banksoalmatematika.com

  6. Contoh Soal 1. Jika 2log x = 3 Tentukan nilai x = …. Jawab: 2log x = 3  x = 23 x = 8. www.banksoalmatematika.com

  7. Contoh Soal 2. Jika 4log 64 = x Tentukan nilai x = …. Jawab: 4log 64 = x  4x = 64 4x = 44 x = 4. www.banksoalmatematika.com

  8. Contoh Soal 3. Nilai dari 2log 8 + 3log 9 = …. Jawab: = 2log 8 + 3log 9 = 2log 23 + 3log 32 = 3 + 2 = 5 www.banksoalmatematika.com

  9. Contoh Soal 4. Nilai dari 2log (8 x 16) = …. Jawab: = 2log 8 + 2log 16 = 2log 23 + 2log 24 = 3 + 4 = 7 www.banksoalmatematika.com

  10. Contoh Soal 5. Nilai dari 3log (81 : 27) = …. Jawab: = 3log 81 - 3log 27 = 3log 34 - 3log 33 = 4 - 3 = 1 www.banksoalmatematika.com

  11. Contoh Soal 6. Nilai dari 2log 84 = …. Jawab: = 2log 84 = 4 x 2log 23 = 4 x 3 = 12 www.banksoalmatematika.com

  12. 2log 8 = 4 2 Contoh Soal 7. Nilai dari 2log 84 = …. Jawab: = 2log 84 = 2 x 2log 23 = 2 x 3 = 6 www.banksoalmatematika.com

  13. Contoh Soal 8. Jika log 100 = x Tentukan nilai x = …. Jawab: log 100 = x  10x = 100 10x = 102 x = 2. www.banksoalmatematika.com

  14. Latihan Soal www.banksoalmatematika.com

  15. Soal - 1 log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235 www.banksoalmatematika.com

  16. Pembahasan log 3 = 0,477 dan log 2 = 0,301 log 18 = log 9 x 2 = log 9 + log 2 = log 32 + log 2 = 2 (0,477) + 0,301 = 0,954 + 0,301 = 1,255 www.banksoalmatematika.com

  17. Jawaban log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235 c. 1,255 www.banksoalmatematika.com

  18. Soal - 2 log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5 www.banksoalmatematika.com

  19. Pembahasan log 2 = 0,301 dan log 5 = 0,699 = log 5 + log 8 + log 25 = log 5 + log 23 + log 52 = log 5 + 3.log 2 + 2.log 5 = 0,699 + 3(0,301) + 2(0,699) = 0,699 + 0,903 + 1,398 = 3,0 www.banksoalmatematika.com

  20. Jawaban log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5 b. 3 www.banksoalmatematika.com

  21. Soal - 3 Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674 www.banksoalmatematika.com

  22. Pembahasan log 4,72 = 0,674 log 4.720 = log (4,72 x 1000) = log 4,72 + log 1000 = log 4,72 + log 103 = 0,674 + 3 = 3,674 www.banksoalmatematika.com

  23. Jawaban Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674 c. 3,674 www.banksoalmatematika.com

  24. Soal - 4 Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130 www.banksoalmatematika.com

  25. Pembahasan log 3 = 0,477 dan log 5 = 0,699. log 135 = log (27 x 5) = log 27 + log 5 = log 33 + log 5 = 3(0,477) + 0,699 = 1,431 + 0,699 = 2,130 www.banksoalmatematika.com

  26. Jawaban Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130 d. 2,130 www.banksoalmatematika.com

  27. Soal - 5 Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b www.banksoalmatematika.com

  28. Pembahasan Diketahui log 3 = a dan log 2 = b. log 18 = log (9 x 2) = log 9 + log 2 = log 32 + log 2 = 2.log 3 + log b = 2(a) + b = 2a + b www.banksoalmatematika.com

  29. Jawaban Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b b. 2a + b www.banksoalmatematika.com

  30. Soal - 6 Diketahui plog 27 = 3x Maka plog 243 = …. a. 4x b. 5x c. 6x d. 7x www.banksoalmatematika.com

  31. Pembahasan plog 27 = 3x 33 = p3x Maka: x = 1 dan p = 3 plog 243 = 3log (3)5 = 5.3log 3 = 5 . X = 5x www.banksoalmatematika.com

  32. Jawaban Diketahui plog 27 = 3x Maka plog 243 = …. a. 4x b. 5x c. 6x d. 7x b. 5x www.banksoalmatematika.com

  33. Soal - 7 Diketahui log 2 = 0,301 Maka log 50 = …. a. 0,699 b. 1,301 c. 1,699 d. 2,301 www.banksoalmatematika.com

  34. Pembahasan log 2 = 0,301 log 50 = log (100 : 2) = log 100 – log 2 = log 102 – log 2 = 2 – 0,301 = 1,699 www.banksoalmatematika.com

  35. Jawaban Diketahui log 2 = 0,301 Maka log 50 = …. a. 0,699 b. 1,301 c. 1,699 d. 2,301 c. 1,699 www.banksoalmatematika.com

  36. Terima Kasih.. Dapatkan soal matematika lainnya di: http://www.banksoalmatematika.com www.banksoalmatematika.com

More Related