1 / 39

LOGARITMA

LOGARITMA. OLEH: SETYAWATI, S.Pd.Si. MATEMATIKA. STANDAR KOMPETENSI: Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar dan logaritma. KOMPETENSI DASAR: 1.1 Menggunakan aturan pangkat, akar dan logaritma. INDIKATOR: Mengubah bentuk pangkat ke bentuk logaritma dan

roddy
Download Presentation

LOGARITMA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LOGARITMA OLEH: SETYAWATI, S.Pd.Si MATEMATIKA

  2. STANDAR KOMPETENSI: • Memecahkan masalah yang berkaitan dengan bentuk • pangkat, akar dan logaritma KOMPETENSI DASAR: 1.1 Menggunakan aturan pangkat, akar dan logaritma

  3. INDIKATOR: • Mengubah bentuk pangkat ke bentuk logaritma dan • sebaliknya • Melakukan operasi aljabar dalam bentuk logaritma

  4. Pengertian Logaritma Plog a = m artinya a = pm Keterangan: p disebut bilangan pokok a disebut bilangan logaritma atau numerus dengan a > 0 m disebut hasil logaritma atau eksponen dari basis

  5. Logaritma dengan basis 10 Pada bentuk plog a = m, maka: 10log a = m cukup ditulis log a = m. Basis 10 pada logaritma tidak perlu dituliskan. Contoh: 10log 3  dituliskan log 3 10log 5  dituliskan log 5

  6. Sifat-sifat Logaritma 1. plog (a x b) = plog a + plog b 2.plog (a : b) = plog a - plog b 3. plog (a)n = n x plog a m m = plog (a) n n 4. plog plog a =

  7. Contoh Soal

  8. Contoh Soal 1. Jika 2log x = 3 Tentukan nilai x = …. Jawab: 2log x = 3  x = 23 x = 8.

  9. Contoh Soal 2. Jika 4log 64 = x Tentukan nilai x = …. Jawab: 4log 64 = x  4x = 64 4x = 44 x = 4.

  10. Contoh Soal 3. Nilai dari 2log 8 + 3log 9 = …. Jawab: = 2log 8 + 3log 9 = 2log 23 + 3log 32 = 3 + 2 = 5

  11. Contoh Soal 4. Nilai dari 2log (8 x 16) = …. Jawab: = 2log 8 + 2log 16 = 2log 23 + 2log 24 = 3 + 4 = 7

  12. Contoh Soal 5. Nilai dari 3log (81 : 27) = …. Jawab: = 3log 81 - 3log 27 = 3log 34 - 3log 33 = 4 - 3 = 1

  13. Contoh Soal 6. Nilai dari 2log 84 = …. Jawab: = 2log 84 = 4 x 2log 23 = 4 x 3 = 12

  14. Contoh Soal 7. Nilai dari 2log 84 = …. Jawab: = 2log 84 = 2 x 2log 23 = 2 x 3 = 6 2log 8 = 4 2

  15. Contoh Soal 8. Jika log 100 = x Tentukan nilai x = …. Jawab: log 100 = x  10x = 100 10x = 102 x = 2.

  16. Latihan Soal

  17. Soal - 1 log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235

  18. Pembahasan log 3 = 0,477 dan log 2 = 0,301 log 18 = log 9 x 2 = log 9 + log 2 = log 32 + log 2 = 2 (0,477) + 0,301 = 0,954 + 0,301 = 1,255

  19. Jawaban log 3 = 0,477 dan log 2 = 0,301 Nilai log 18 = …. a. 1,552 b. 1,525 c. 1,255 d. 1,235 c. 1,255

  20. Soal - 2 log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5

  21. Pembahasan log 2 = 0,301 dan log 5 = 0,699 = log 5 + log 8 + log 25 = log 5 + log 23 + log 52 = log 5 + 3.log 2 + 2.log 5 = 0,699 + 3(0,301) + 2(0,699) = 0,699 + 0,903 + 1,398 = 3,0

  22. Jawaban log 2 = 0,301 dan log 5 = 0,699 Nilai log 5 + log 8 + log 25 = …. a. 2 b. 3 c. 4 d. 5 b. 3

  23. Soal - 3 Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674

  24. Pembahasan log 4,72 = 0,674 log 4.720 = log (4,72 x 1000) = log 4,72 + log 1000 = log 4,72 + log 103 = 0,674 + 3 = 3,674

  25. Jawaban Diketahui log 4,72 = 0,674 Nilai dari log 4.720 = …. a. 1,674 b. 2,674 c. 3,674 d. 4,674 c. 3,674

  26. Soal - 4 Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130

  27. Pembahasan log 3 = 0,477 dan log 5 = 0,699. log 135 = log (27 x 5) = log 27 + log 5 = log 33 + log 5 = 3(0,477) + 0,699 = 1,431 + 0,699 = 2,130

  28. Jawaban Diketahui log 3 = 0,477 dan log 5 = 0,699. Nilai log 135 = …. a. 2,778 b. 2,732 c. 2,176 d. 2,130 d. 2,130

  29. Soal - 5 Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b

  30. Pembahasan Diketahui log 3 = a dan log 2 = b. log 18 = log (9 x 2) = log 9 + log 2 = log 32 + log 2 = 2.log 3 + log b = 2(a) + b = 2a + b

  31. Jawaban Diketahui log 3 = a dan log 2 = b. Maka log 18 = …. a. 2a – b b. 2a + b c. a + 2b d. a – 2b b. 2a + b

  32. Soal - 6 Diketahuiplog 27 = 3x Makaplog 243 = …. a. 4x b. 5x c. 6x d. 7x

  33. Pembahasan plog 27 = 3x 33 = p3x Maka: x = 1 dan p = 3 plog 243 = 3log (3)5 = 5.3log 3 = 5 . X = 5x

  34. Jawaban Diketahui plog 27 = 3x Maka plog 243 = …. a. 4x b. 5x c. 6x d. 7x b. 5x

  35. UJI KOMPETENSI: 1. Nilai dari 3log 729 adalah .... a. 9 d. 6 b. 8 e. 5 c. 7 2. 2log 16 + 2log 4 – 2log 2 = .... a. 7 d. 4 b. 6 e. 3 c. 5

  36. 3. Jika, log 2 = 0,3010; log 3 = 0,4771; dan log 5 = 0,6990 maka nilai dari log adalah .... a. 0,21365 d. 1,08805 b. 0,73855 e. 1,4771 c. 0,7855 4. Jika log (2x + 10) = 2, nilai x adalah a. 90 d. 7 b. 45 e. 2 c. 9

  37. 5. Diketahui log 2 = 0,301 Maka log 50 = …. a. 0,699 b. 1,301 c. 1,699 d. 2,301 e. 2,699

  38. Referensi Sartono Wirodikromo. 2006 . Matemetika untuk SMA kelas X. Jakarta: Erlangga Chafidzah,dkk. LKS Matematika untuk SMA kelas X. Solo: CV Sindunata

  39. Penyusun: Setyawati, S.Pd.Si

More Related